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1.0 INTRODUCTION

Advanced composites have been identified as candidate material systems for a variety of
aeropropulsion, aerostructure, space structure, and airframe components. A number of
these applications involve joints between similar and dissimilar material systems. Some .
of these are mechanical joints such as bolted and riveted connections. Others are
fabricated by adhesive bonding, welding, brazing, and a variety of other methods.
Adhesive bonding has always been a very desirable method for joining the composite
components to achieve maximum structural efficiency and improve the structural
integrity. Bonded joints not only have better strength-to-weight ratio but they also avoid
the use of thousands of fasteners and the fastener holes in the structure. Figure 1.1 shows
various types of bonded joints commonly used in the assembly of aerospace structures.

Apart from the mechanical loads such as tension/compression, bending and shear, the
aerospace structures are subjected to aerodynamic and radiation heating resulting in
thermal loads. For example, in space structures the cold space coupled with radiant solar
heating can lead to a wide range of operating temperatures which are of the order of 160°C
to 120°C. A bonded joint is also subjected to cyclic thermal loading due to the variation in
the operating temperature of the aircraft. For example, at the cruise altitude the fuselage of
a transport -aircraft cools down to approximately -55°C thereby subjecting the bonded
joint or bonded repaired structure to cyclic thermal stresses during each flight. Yet another
source of thermal stresses in bonded structures is due to the fact that bonding usually
requires curing of the adhesive at temperatures higher than the room temperature.

When two adherends are made of dissimilar materials having different coefficients of
thermal expansions, the cool down phase of the curing process induces residual stresses in
the jointed materials even in an unrestrained structure. Such situations commonly exist
when one adherend is made of metallic material and the other is a laminated composite
plate. Thus, the analysis of adhesively bonded joints where bonding between two
dissimilar materials with different thermal expansion coefficients is involved or where the
structure is constrained against its free expansion (even if the two jointed materials are
identical), requires due consideration of the thermal stresses.

An understanding of the load transfer mechanism and the location(s) of severely stressed
regions is of utmost importance for designing a reliable bonded joint. An accurate
prediction of static strength of the joint or its service life under sustained
thermomechanical loading is also dependent upon how accurately the stress distributions
are predicted by an analysis approach. In addition, the analytical model/approach
employed for the stress analysis of bonded joints should be computationally efficient as
well as viable for its further use into a fracture mechanics based strength and life
prediction methodology. Thus, the importance of an accurate stress analysis of bonded
joints needs no further discussion. This work is primarily focused on the various aspects
of the stress analysis in bonded joints subjected to thermomechanical loads.
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Fig. 1.1 Typical adhesively bonded joints.

During the SBIR Phase-II activity an extensive survey of the existing state of the art in
the analysis and design of adhesively bonded joints is performed. Some of the computer
codes for the analysis of adhesively bonded joints, developed as part of the earlier efforts
by Air Force and Navy, are obtained and made operational on IBM RISC 6000 and PC.




The most versatile and best code among them is selected for further studies and software
development. In addition, a versatile three-dimensional, generalized coordinate finite
element analysis based on variable-order (similar to p-type) solid elements is also
developed and applied to analyze some double-lap bonded joint configurations subjected
“to thermomechanical loading. Using this analysis the effects of change in the design
parameters such as bond length, bond thickness and adhesive curing temperature on the
failure loads of a double-lap adhesively bonded joint are studied through a combined
analytical and experimental work. Finally, three-dimensional stresses in the composite-to-
metal and composite-to-composite double-lap bonded joints are obtained using a
submodeling technique available in the commercial finite element analysis package
ABAQUS. Subsequently, the stress field in the presence of an initial debond was also
studied using ABAQUS.




2.0 BACKGROUND

The design and analysis of the bonded joints require analytical tools for accurate
determination of the stress distributions in the adherends and the adhesive. In the last half
century engineers and researchers have developed a number of analysis tools to analyze .
adhesively bonded joints. These analytical methods are based on continuum mechanics,
plane strain/stress closed form solutions, 2-D and 3-D finite element analyses solutions.
The classical paper published by Goland and Reissner' in 1944 is perhaps the most cited
work in the analysis of adhesively bonded joints. In their work Goland and Reissner
- analyzed a single lap joint for two limiting cases, i.e., (i) where the adhesive layer is so
thin that its effect on flexibility of joints can be neglected, and (ii) where the joint
flexibility is mainly due to the adhesive layer (as is the case of most thin-walled bonded
aerospace structures). During the analysis they assumed that (i) the axial stress in the
adhesive layer can be neglected, and (ii) normal and transverse shear stresses in the
adhesive layer do not vary across the thickness of the adhesive. Since the publication of
Goland and Reissner’s work more than half a century ago, these basic assumptions have
been employed by numerous authors to extend the work in the area of analysis and/or
design of bonded joints. In his extensive work on bonded joints, Hart-Smith?6 4043 50 hag
outlined various aspects of efficient bonded joint design in composite structures that an
airframe designer should consider while designing bonded joints between components in
the aircraft structures. Hart-Smith also made many useful studies to analyze the load
transfer mechanism in the adhesive bonded joint(s) and outlined some practical ways to
minimize the transverse shear and peel stresses in the adhesive layer. The extensive work
done by Hart-Smith in the last three decades gives a deep insight into the practical joint
design considerations in primary aircraft structure components viz., fuselage, wing,
horizontal and vertical tails, and control surfaces, etc.. Vinson’ carried out extensive
analytical and experimental work in the area of adhesively bonded joints involving
polymer composite adherends. Vinson and his colleagues®'? developed analytical tools to
analyze adhesively bonded joints by including into the analysis the effects of transverse
shear deformation, transverse normal strain, temperature and moisture variations. Adams
and his colleagues' " also contributed immensely to improve the understanding of
adhesive bonded joints in engineering applications. The text by Adams and Wake!®
presents a comprehensive treatise on the design and production of adhesively bonded
joints used as primary load carrying members. The mechanics and chemistry of designing
a sound bonded joints are discussed, and standard methods of testing adhesives are
outlined.

An excellent review of the work performed prior to 1969 in the area of adhesively
bonded joints is presented by Kutscha'” and Kutscha and Hofer'®. Schliekelmannedited
an AGARD lecture series on adhesive bonded joints in 1979. This lecture series contains
work on analysis and design, failure response, processing and testing of adhesively
bonded joints by the leading researchers/engineers of that time. An excellentbibliography
on adhesive bonded joints is also included in Ref. [19]. In 1988 Mall, et al.2’ and




Johnson?! compiled and edited some of the work on the advancement of adhesively
bonded joints technology. Vinson’ reviewed the state of the art of analysis and design of
adhesive bonded joints in 1989. Apart from the literature mentioned above, there is
plenty of open literature on the analysis and design, preparation, processing and testing
of adhesively bonded composite joints. Closed-form analytical solutions of adhesively .
bonded joints were obtained by Delale, et al.,”? Groth,”® Liu,2* Pahoja,” and Srinivas.?®
Adams and Peppiatt,)® Amijima, et al.?’”® Roy and Reddy,” Sable and Sharifi,*
Humpherys and Herakovich,?! Barthelemy, et al.,*2 and Barker and Hatt,* all performed
finite element based analysis of bonded joints. In addition to the efforts of Hart-Smith,
~ Vinson and Adams, the work on design and/or analysis of bonded joints was also
extended by Chamis and Murthy,>* Shyprykevich,®> Findlater,*® Kelly, et al.,”’” and Tsai
and Morton.*®

2.1 COMPUTER CODES FOR ANALYSIS OF BONDED JOINTS

For the past three decades the researchers and engineers have been involved in the
development of various analytical techniques to analyze bonded composite joints. Efforts
by the various groups have resulted in some useful computer programs that can be
utilized by the aerospace engineers and designers engaged in bonded joint design work. An
updated list of composite bonded joint programs developed as of 1994 was compiled by
Negaard® and published by Aerospace Structures Information and Analysis Center
(ASIAC). These programs are listed in Table 2.1. The state-of-stress accounted for in the
strength/stress analysis, and name of the agency responsible for developing these
computer programs is also stated therein. Table 2.1 also lists the generalized coordinate
finite element analysis program Structural Analysis using Variable-order Elements
(SAVE), developed as part of the current SBIR Phase-II activity. This program has been
applied to analyze some double-lap bonded joint configurations subjected to
thermomechanicalloading. The solution approach employed in each of these codes, and
their capabilities and/or limitations are discussed briefly in the following paragraphs.




Table 2.1 Computer codes for analysis of bonded joints.

SI.No. AnalysisCode Agency/Developer (Year) State-of-stress Applications
1. JOINT A. F. McDonnell D. 1-D Single lap, double lap, scarf and step lap joints
(1978)
2. JTSDL/ A.F./ SwRI 2-D Single lap, double lap and step lap joints
JTSTP (1972) ’
3. BOND3/ A. F. /U. of Delaware. 2-D Single lap joints
BOND4 (1974)
4. BONJO'I A. F. /Lockheed 2-D Single and double lap joints
(1972)
S. A4EI A. F. McDonnell D. 1-D Stepped lap and doubler joint repair
(1982)
6. PGLUE Navy/McDonnell D. 2-D Bonded joint repair
(1987)
7. SAVE Air Force/AdTech 2-D/3-D 2-D/3-D generalized coordinate FE structural
(1996-) analysis using variable-order elements.

2.1.1 JOINT

This is an “ Interactive Composite Joint Design” program developed by Hart-Smith, et
al.*** for the analyses of bolted and bonded composite joints. In the case of bonded
composite joints, the following four types of joints can be analyzed (see Fig. 1.1):

(1) unsupported/supported single lap ’

(i1) double lap

(iii) stepped lap

(iv) scarf

The in-plane loads are assumed to act in the adherends, with no lateral applied loads. The
analysis can also account for the initial stresses induced by the bonding of metals to
composites. The adherend materials have linear elastic behavior, while adhesive is
modeled as an elastic-plastic material to account for its considerable nonlinear deformation
prior to failure. For a givenin-plane loading, optimum overlap, adhesive strengths and
adherend strengths are calculated. The analysis approach is based on the solution to
differential equations from the classical continuum mechanics. Some solutions are explicit,
while others are exact, but implicit, and require an iterative solution. Experimentally
determined material stress-strain curves are used to cover the possible failure modes of
adhesive shear, adhesive peel, and adherend in-plane and interlaminar failures. The
analysis capabilities of this approach are limited by the fact that it utilizes a lot of test
data for the adhesive and the jointed plates to compute the joint strengths. Thus, each
change of material system requires a complete repetition of all testing.




2.1.2 JTSDLAJTSTP

This is a nonlinear design/analytical method developed for the analysis of bonded single,
double, and step-lap joints by Grimes, et al.** The analysis is based on the elastic
continuum method and utilizes the Ramberg-Osgood*’ three parameter stress-strain
curves for the adhesive and adherends. A state of plane strain is assumed and the effects
of interlaminar shear stress and transverse normal strain are neglected in the analysis. The
adhesive shear and peel (normal) stresses are assumed to be constant through the adhesive
thickness. The joint behavior may be predicted throughout the elastic and inelastic range
to failure. Maximum stress theory is used to predict failure for both adhesive and metallic
adherends, and maximum strain theory is used to predict failures of laminated adherends.
At the predicted failure load, the stresses in adhesive and adherends can be obtained along
the overlap length. For a laminated, composite adherend ply-by-ply stress distributions
can be obtained. The approach is limited in its application due to the non inclusion of the
effects of transverse shear and normal stresses into the analysis. The work of Sharpe and
Muha* also emphasized this limitation of JTSDL code by showing that the boundary
condition on the transverse shear stress at the free-edge is violated by this analysis code.

2.1.3 BOND3/BOND4

The computer codes BOND3 and BOND4 were developed by Renton and Vinson*™*® to
analyze a single lap bonded joint with similar and/or dissimilar adherends of either
isotropic or anisotropié materials. This linear elastic analysis is based on the assumption
of plane strain and considers applied axial tensile loads and thermal strains. The adhesive
layer is modeled after Goland-Reissner assumptions. The computer code is based on a
closed form solution obtained for stresses and deformations in adhesive joint and
adherends and incorporates transverse shear deformations and normal strain. Thus, the
shear stress is zero at each end of the overlap, and reaches its maximuma short distance
away from the edge and diminishes somewhat further in the interior of the single lap joint.
The distribution of shear and peel stresses in adhesive and axial, transverse shear and
normal stresses in each ply of the composite adherends can be obtained as an output from
the computer code. Sharpe and Muha*® found that the shear stress distribution predicted
by the BOND4 code compared well with their experimental observations for a single lap
bonded joint with identical adherends.

2.14 BONJO

A comprehensive linear analysis method and the associated computer program (BONJO
Series) was developed by Dickson, et al.*® for the purpose of analyzing bonded joints in
composite structures. Three separate computer programs were developed to analyze the
bonded joints in composite structures. They are

1. BONJOIG,

2. BONIJOIS,




3. and BONJO.

BONIJOIG analyzes any general single lap (different adherends) or double lap bonded
joint configuration by assuming a linear elastic stress-strain behavior of adhesive.
BONIJOIS analyzes only single lap bonded joint configuration in which the two adherends
are identical. BONJOIS also assumes a linear elastic stress-strain behavior of adhesive.
BONJO approximates the adhesive material behavior by means of a bilinear elastic-
perfectly plastic stress-strain relationship, and is an extension of BONJOIG program.

An analytical closed-form solution is obtained for single lap and double lap bonded joints
(see Fig. 1.1) with laminated composite material adherends. A narrow uniaxially loaded
joint configuration is assumed so that a state of plane stress exists. The mathematical
model for the adhesive is based on Goland and Reissner’s' assumptions i.e., axial stress in
the adhesive and through-the-thickness variations of adhesive normal stress and shear
stress are neglected during the analysis. The effects of transverse shear deformations and
normal strain have been taken into account in analyzing the adherends. This effect is
important for an accurate prediction of peak shear stresses in the adhesive because of the
relatively low transverse shear stiffness and normal stiffness (through the thickness of the
laminate) of most fibrous composites. The work is further extended to include joints with
ideally elastic-plastic adhesive stress-strain behavior. Sharpe and Muha*® made a
comparison of adhesive shear and normal stresses obtained from computer codes
BONJO, BOND4, JTSDL and NASTRAN for a single lap bonded joint with identical
adherends, and found that the stress values predicted by BONJO and BOND4 were
nearly the same. They also pointed out that the stresses obtained from the closed form
solution BONJO compared fairly well with the experimental observations for a single lap
bonded joint with identical adherends.

2.1.5 A4EI

This program was developed by Hart-Smith®’to analyze adhesive-bonded stepped-lap
Joints and doublers (see Fig. 1.1). The computer program A4EI is particularly useful in
optimizing the proportions of stepped lap joints, as between metallic edge members and
composite laminates. It can also be used to analyze bonded joint repairs. Both the
analysis and experimental observations have pointed out that the strength of the metal-to-
composite stepped-lap joints can be particularly sensitive to poor detailing of the end
step of the metal plate as well as the gross mismatch of adherend stiffness. The A4EI
program performs a nonlinear analysis of the stepped-lap joints, and accounts for elastic,
elasto-plastic, and bilinear adhesive behaviors. The analysis approach is based on the
solution to differential equations from the classical continuum mechanics. The analytical
solutions are obtained for the stepped-lap bonded joints that include the effect of the
type load such as tension, compression, or in-plane shear; and residual thermal stresses
due to curing; optimization of joint proportions; the changes in critical failure mode with
temperature and/or loading; and the load distribution around the flaws.




2.1.6 PGLUE

The computer code PGLUE was developed by Fogarty and Saff’! in 1987. The objective

of this program is to provide stress and deflection analysis of repairs made with

adhesively bonded patches. The computer program PGLUE requires geometry, material

properties, and the loading conditions as input, and gives stresses, strains and deflections

at various points in the three medium (skin, patch, and adhesive) as output. This program

performs a three-dimensional analysis of the bonded repairs and thus, offers significant

advantages over the two-dimensional analysis program such as A4El. PGLUE requires

significantly less empirical data than A4EI, and uses only the standard material data and

the adhesive stress-strain curve to provide a solution. The major features of this program

are given below:

1. A quasi-three dimensional analysis of bonded repairs is performed.

2. Biaxial and shear loadings can be applied.

3. Bilinear as well as elastic/perfectly plastic behavior of the adhesive can be
accommodated.

4. Tapered patch repairs with variable thickness can be analyzed.

5. Plastic zone size can be calculated in two in-plane dimensions.

The PGLUE code is based on the quasi-3-D finite element analysis using a linear eight-
node hexahedron element. An elastic-plastic analysis of the adhesive is also incorporated
into the code to determine load levels at which small scale yielding occurs. The
assumption of small scale yielding implies only small modifications to the elastic strain
field and adhesive material stress-strain curve to simulate bondline yielding. This resulted
in determination of the location and extent of bondline yielding with reasonably small
computational time. However, Fogarty and Saff found that this quick design feature
limited the accuracy of the plastic analysis and predicted the size of the plastic zone to
within 50 percent of the plastic zone size computed by the computer program A4EIL

2.1.7 SAVE

SAVE is a novel, generalized coordinate finite element program developed in-house as
part of the SBIR Phase II activity. The SAVE program can be utilized to model and
analyze various adhesively bonded joint configurations as shown in Fig. 1.1. The
computational algorithm of the SAVE program is based on variable-order rectangular,
cylindrical and wedge solid elements, and does not involve any coordinate interpolation.
Thus, only the structural problems having geometry which is exactly discretized as an
assemblage of any of the variable-order solid element shapes such as rectangular,
cylindrical and wedge or their combination thereof, can be analyzed by this analysis
technique. However, compared to standard FE formulations based on nodal variables, the
generalized coordinate finite element formulations presented here provides higher
numerical accuracy in the solution of the structural problems having geometry which can
be exactly discretized by the selected element shape. Further, through the use of higher-
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order polynomials in the elemental displacement field approximations, variable-order
solid elements provide higher accuracy in the solution with substantially lower degrees of
freedom in the computational model. The analytical solution obtained by using these
elements satisfies the transverse stress continuity at the material interface(s) and the
traction-free static boundary conditions in the structure with much higher accuracy. An
accurate stress analysis of the structure is a prerequisite to subsequently develop any
credible damage evolution and failure prediction methodology.

Conceptually, a variable-order element is a higher-order element employing a complete
set of M™ order polynomials to approximate the elemental displacement field. (In finite
element analysis the use of complete polynomials are most desirable’.) A variable-order
element allows one to add higher-order polynomial terms in its displacement
approximations, albeit, not hierarchically. The order M of a variable-order element
describes the highest degree of the polynomials used to approximate the displacement
field of an element in its entire domain. For example, M = 2 results in the element
displacement(s) being approximated by quadratic polynomial functions. Similarly, A = 3
signifies a cubic variation of the displacement field in the entire domain of the element,
and so on. In this respect the variable-order elements seem very similar to the p-type
finite elements; however, most of the p-type elements do not use a complete set of
polynomials, and permit only hierarchic addition of higher-order polynomial terms.

The principle of virtual work is employed to obtain the stiffness matrices and load
vectors for various solid elements subjected to hygrothermomechanical loads. Explicit
expressions for the coefficients of stiffness matrices for variable-order rectangular,
cylindrical and wedge solid elements are derived for the case when the elemental
displacement field is approximated by the triple series. The mathematical formulations for
these elements are presented in Section 3.

The computational algorithm for SAVE program employs Bernstein polynomials to
approximate the elemental displacement field of the variable-order rectangular and
cylindrical solid elements in the three coordinate directions. It follows much of the
standard finite element procedure such as computation of element stiffness and load
matrices, assembly of global stiffness and load matrices for the complete structure by
enforcing the displacement continuity between the elements, reduction in the total number
of the unknown generalized coordinates (or displacement coefficients) after accounting
for the global boundary constraints on the structure, subsequent restructuring of the
global stiffness and load matrices, and solution of the resulting linear system of
equations. Once the solution to the unknown generalized coordinates is obtained, the
displacements, stresses and strains in the structure are then computed. The computer
program called SAVE is written in FORTRAN, and is currently implemented on a Cray
C90 high performance computer to run large-scale structural analysis.
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Several numerical examples were analyzed to demonstrate the accuracy and effectiveness
of the variable-order solid elements in structural analysis. Some benchmark problems
comparing the solutions obtained from the present analysis using variable-order
rectangular and cylindrical solid elements with those given in the open literature are
presented in the next section. In the SAVE computer program the accuracy of solution
can be improved either by increasing the order M of the variable-order element or by
using more variable-order elements in the discrete representation of the structure or by
using a combination of both. This aspect of the variable-order elements is also amply
demonstrated by analyzing some benchmark problems (see Section 3) in multiple ways.

Some of the major advantages of the displacement-based analysis using variable-order

rectangular and cylindrical solid elements (SAVE) are listed below:

(i) The continuity of stresses at the interface(s) of the elements of the same material or of
different materials is achieved with a very high accuracy without enforcing it a priori.

(i) The static (or natural) boundary conditions at the external surfaces are satisfied with a
very high accuracy without enforcing them a priori.

(iif) In most cases, the analysis using variable-order elements requires less degrees of
freedom to solve the problem and achieve same or even higher accuracy of the
solution. _

(iv) The flexibility of selecting a higher-order approximation function for the displacement
field replaces the need of working with the higher-order theories.

However, it is found that there is always an optimum level of order M of the variable-

order elements beyond which there is not much significant improvement in the accuracy

of the solution. Thus, it is preferable to achieve an optimum combination of the order M

and the number of variable-order elements to analyze a given structural problem. The

extension of the generalized coordinate finite element analysis program SAVE for the
two-dimensional analysis of structures using variable-order quadrilateral, triangular,
plane stress/plane strain, plate and shell elements is straightforward.
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3.0 THREE-DIMENSIONAL LINEAR ELASTIC STRUCTURAL ANALYSIS
USING VARIABLE-ORDER ELEMENTS

In this section, first, the mathematical formulations for the displacement-based variable-
order rectangular (hexahedron), cylindrical, wedge and singular 3-D solid (brick) elements
are presented. Then these elements are utilized to perform a linear elastic,
thermomechanical analysis of some benchmark structural problems. The mathematical
formulations presented here are applicable to the analysis of structures exhibitinga wide
spectrum of material behavior such as isotropic, orthotropic or monoclinic. Each variable-
order solid element can have unique material properties defining its material behavior. It is
envisaged that the family of variable-order rectangular, cylindrical, wedge and singular 3-
D solid elements will find its most glamorous application in the analysis of advanced
composite material structures having material and geometrical discontinuities where the
higher-order displacement approximations would be able to represent the structural
response more accurately.

3.1 MATHEMATICAL FORMULATIONS FOR VARI4ABLE-ORDER ELEMENTS

The last four decades have seen the emergence of finite element analysis as the most
powerful tool to solve complex engineering problems. Vast improvements in the
computational resources, both in terms of storage capacity and processing speed of the
computer, has fueled the rapid development of more complex finite elements to efficiently
model specific problems and improve accuracy of the solution. In their text Bathe and
Wilson>® described numerous ways to classify the finite element formulations even when
restricting oneself to the solution of structural mechanics problems based on the
variational principles. For example, a finite element formulation can be displacement-
based, stress-based, mixed, or hybrid, etc. The displacement-based finite element
formulation is the most widely used because of its simplicity, generality, and good
numerical properties.”> Moreover, the convergencecriterion for the displacement-based
finite element formulations are precisely established as compared to the other
formulations. Each of these formulations have been applied by many researchers to
develop a wide variety of beam, plate, shell, plane stress, plane strain, axisymmetric and
general three-dimensional elements. In this work only the displacement-based finite
element formulations are considered; however, the extension of this work to other types
of finite element formulations such as stress-based, mixed, or hybrid can also be -
undertaken.

The principle of virtual work forms the basis of the displacement-based finite element
formulations. The structure is represented as an assemblage of finite number of elements.
The displacement field of each element is approximated in the form of a function whose
unknown coefficients are treated as generalized coordinates. Bathe and Wilson®? termed
this kind of finite element formulation as the generalized coordinate finite element
Jormulation. However, most of the standard/commercial finite element analysis models
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express the generalized coordinates in terms of the element nodal point displacements.
Polynomials are commonly employed to approximate the element displacement field. The
element stiffness and load matrices are formulated, and the global stiffness and load
vectors for the complete structure are obtained by assembling the element stiffness and
load matrices. Depending upon the type of formulation used either the generalized .
coordinates or the nodal displacements are the unknowns in the numerical analysis. Once
the solution for the unknowns is obtained, the displacements, stresses and strains in the
structure can be computed.

In the finite element analysis the accuracy of solution depends mainly on the number of
elements used, and the nature of assumed displacement functions within the elements. In
particular, the accuracy of the analysis can be increased either by using more elements in
the representation of the structure or by adding higher-order terms in the assumed
displacement functions or by using a combination of both. The first method of improving
the accuracy of the solution is known as the A-version of finite element analysis. The
most common technique to improve the displacement approximations of an element is to
hierarchically add higher-order terms. This method of improving the accuracy of the
solution is known as the p-version of finite element analysis.>>*® Incorporating the
advantages of both the 4- and the p- versions is the 4-p version of the finite element>®’
that simultaneously utilizes more elements to represent the structure and also add,
hierarchically, the higher-order terms in the displacement approximations. When the
refinements in the mesh and the displacement approximations are performed in an
adaptive manner, the resulting finite element technique is known as an adaptive h-p
version. The work by Zeinkiewicz, et al.,*>® Babuska, et al.,**” and Szabo> provide a
deep insight into - and p- , and %-p versions of the finite element analysis.

Another commonly used technique to increase the accuracy of the solution is to add the
intermediate node(s) to the side(s) of the element. Bathe and Wilson> called such an
element a variable-number-nodes element. While using the variable-number-nodes
element, it is not always necessary to add the intermediate nodes to more than one side of
the element at once. There is a flexibility to choose the side(s) and the number of
intermediate node(s) to be added to an element. The most notable feature of the variable-
number-nodes element is that any addition of intermediate node(s) essentially results in
the addition of a higher-order polynomial term(s) in the displacement approximations,
albeit, not hierarchically. (It may be emphasized here that in this work the term
hierarchicallyis used as defined by Zeinkiewicz, et al.>® That is why this type of FE
technique may not exactly fall into the p-version of the finite element analysis which is
solely used in the context of the kierarchic addition of higher-order polynomial terms in
the displacement approximations. Thus, without the loss of generality, a variable-
number-nodes element can be termed as a higher-order finite element. Now, let’s consider
the formulation of a variable-number-nodes element in terms of the generalized
coordinates instead of the nodal displacements. Any addition of a higher-order
polynomial term would now result in an additional generalized coordinate (or unknown
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coefficient) in the assumed displacement approximations of the element. It is proposed to
express such an element simply as a variable-order element. Thus, a variable-order
element is a generalized coordinate finite element which allows one to add higher-order
polynomial terms in the displacement (or even stress) approximations, albeit, not
hierarchically. The order of the variable-order element, denoted as M, describes the .
degree of polynomial used to approximate the displacement field in the entire domain of
an element. For example, M = 2 results in the element displacement(s) approximated by
quadratic polynomial functions. Similarly, M = 3 provides a cubic variation of the
displacement field in the entire domain of the element.

Based on the mathematical formulations presented here a computational algorithm in
FORTRAN language has been developed for the 3-D variable-order rectangular and
cylindrical solid elements. The extension of the computational algorithm to incorporate
the 3-D wedge and singular solid elements is currently in progress. The computational
algorithm follows much of the standard finite element procedure such as computation of
element and load stiffness matrices, assembly of global stiffness and load matrices for the
complete structure by enforcing the displacement continuity between the elements,
reduction in the total number of the unknown generalized coordinates (or displacement
coefficients) after accounting for the global boundary constraints on the structure,
subsequent restructuring of the global stiffness and load matrices, and solution of the
resulting linear system of equations. Once the solution to the unknown generalized
coordinates is obtained, the displacements, stresses and strains in the structure are then
computed. In the computational algorithm presented, the accuracy of the solution can be
improved either by increasing the order M of the variable-order element or by using more
variable-order elements in the representation of the structure or by using a combination
of both. The accuracy and the effectiveness of the variable-order elements in analyzing
complex structures will be demonstrated in the subsequent works where several numerical
examples will be presented comparing the solution obtained from the present analysis
with those given in the open literature for some benchmark problems.

The following sections contain the mathematical formulations for the 3-D variable-order
rectangular, cylindrical, wedge and singular brick elements. First, the mathematical
formulations for a variable-order rectangular brick element are presented. Most of the
formulations described for the variable-order rectangular brick element can also be
utilized to formulate the stiffness and load matrices of the variable-order rectangular
wedge and singular brick elements. The major differences among these three elements
occur in terms of their assumed displacement field. Subsequently, the mathematical
formulations for a variable-order cylindrical brick element are presented. The major
differences between the mathematical formulations of rectangular and cylindrical brick
elements occur due to the definition of the reference coordinate system for quantities such
as displacements, strains and stresses and the strain-displacement relations.
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3.1.1 Rectangular brick element

3.1.1.1 Strain-displacementrelations

Figure 3.1 shows a rectangular brick element in the Cartesian (x, y, z) coordinate system.
The generalized displacement vector of the brick element shown in Fig. 3.1 is given by

i=[uyv,wll )

where u=u(x,y,z), v=v(x,y,z) and w=w(x,y,2).
Let the generalized strain vector for the brick element be

T,

2
b4 y
A
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n+1i 7
1 Syz  nel »
! Sxz 7
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1
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/‘ Txx
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y: »y
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X1 "8 = Vi)~V = b5 2y -2, =P
Fig. 3.1 A rectangular solid element in a global Cartesian (x, y, z) coordinate system.
= _ - T 2
8—[8_,05 ’8yy’ezz :Yy297xzany] ( )

Assuming small displacements and displacement gradients, the three-dimensional strain-
displacement relations for the brick element are written as:
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3.1.1.2 Constitutive law

Let the generalized stress vector for the rectangular brick element be given by
~ T 4
G"'[oxxaoyyaczza'tyza szs’t;y] ( )

Also, let AT and Am represent the distribution of change in temperature and moisture
content, respectively, of the elemental brick from some datum values. The term
distribution in the previous statement means that the change in the temperature or the
moisture content need not be constant in the brick element, and AT = AT(x,y,2) and
Am =Am(x,y,z) . The constitutive law for the brick element including hygrothermal
effects can be written as

5={0k-RAT - RBAm 5)

where

(O G2 G3 0 0 Gi6 |
G2 On O3 0 0 0O
O3 O3 O3 0 0 Qs

lo= 0 0 0 O Q45 O | ©

0 0 0 G5 Gs O '

Q6 D6 956 0 0 O

and
R =R}, RS, RL,0,0,REYT, i=a,pB. )

The stiffness coefficients Oy in Eq. (6), and the coefficients R}m Eq. (7) are given in
Appendix A.

3.1.1.3 Virtual work functional

The statement of virtual work for the brick element is written as
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swnt = s ®

where the internal virtual work for the brick element is
swint = [[ s&"sav, | O
and the v@al work due to external forces acting on the element is

o = ] 5, T8 ds+ [J] B-saav, i=12.8. (10)

In Eq. (10) S; represents the surface area of the i™ face of the elemental brick and V is the
volume of the brick element shown in Fig. 3.1. Also, in Eq. (10) T; is external surface
traction vector acting on the i™ face of the brick element, &u; is virtual displacement
vector of the i face of the brick element, and B is body force vector in the domain (or

volume) V. Substituting Eq. (5) in Eq. (9), neglectingthe contribution of body forces in
the external virtual work of the brick element given by Eq. (10) and rearranging the terms,
the virtual work statement (Eq. (8)) for the brick element subjected to external surface
tractions and hygrothermal loads can be written in the following functional form as

[[[seT{oYeav = [ T -sads + [[[ & R*ATaV + [[], 86T RPAmav (11)
v i

The typical external surface tractions acting on the rectangular brick element are shown in
Fig. 3.1. They are

/ 1 ! 41 JI+1 M1
Sxx>Syx »Szx at x = xy, Sxx sSyx Sz at x = x4

gntl el me '
S5y :S ’zyaty Ym» Sxy Sy Szy Al Y=Yy (12)

+1 1 p+l
sxzo ngzzssn at z= Zy, S;c,z ssyz 3322 at z= =Zn+l

The traction vector 7; acting on the i™ face of the brick element can be written in terms of

the surface tractions acting on that face. For example, the surface traction vectors acting
on the faces x = x; and X = x4 of the brick element are given by

T =5k (320" + yx(y,z)ﬁyl + 5. (0,2)0! at x=1x (denoted as face 1), and (13)

T = sl (y,2)5%2 + l+1(y,2)1)y 2453, at x=xp (denoted as face 2),

respectively.
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Similarly, the virtual displacement vectors for the faces ¥ = X; and x = x4 of the brick
element are given by

8ty = 8u(xy,y,2)0™ +8v(x;, 3, 2)0”! + dw(x;,,2)07) at x = x;, and (14)
8ily = Su(x141,9,2)0%% + & (x141,7,2)07% +80(x141, 7,20 at x= x4,

In the Egs. (14) and (15) the 7,9%”,%" are the direction cosines w.r.t. to x-, y-, and z-
coordinate axes for the i™ face of the brick. Similar expressions for the traction vectors and
the virtual displacement vectors for other four faces can also be written. Thus, by using
the definitions of traction vectors at the six faces of the brick element in terms of the
applied surface tractions given by Eqs. (12) and (13), and also by formulating the virtual
displacement vectors for each of the brick faces as described above (see Egs. (14)), the
external virtual work term in Eq. (11) for the brick element is expressed as

j j T, - 8%dS
= H 4 6200, ,2)+ s (7,2 B9 e, 3,2) + st (2o ey 9,2 Jee
JJ Faal OO0 AR PPl (109 Y ORI ) P COF) 7 RS %

S1+1

+ ” [9,',”y(x, 2)0u((x, Y 2 )+ sJ'g,(x,z)Sv(x, Vs Z)F sz';’,(x,z)6w(x, Vm ,z)]lxdz (15) -
+ ” [vg" 1(x,2)0ux, Ve 1 Z)+ Sy Lo, 2)ov (x, ym+1,z)+ s, 2)owx, ym+1,z)]irdz

Sm+1

o [RGBl ey bt P
. u ST RN ST N AR WELT 00 W A W%

ﬂ+1

The Eq. (11) in conjunction with Eq. (15) provides the complete statement for virtual
work for the elemental brick.

3.1.1.4 Displacement approximations

Let the actual displacement field for the rectangular brick element shown in Fig. 3.1 be
represented in the variable separable form by the triple series as
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I J K

u(x,y,2)= Y, 3, 2 UnF )GI(MH} (2) | (16)
i=1 j=1k=1
I jJ K

W%y,2)= 2, 2, 3 Ve ()G (W) HE (2) a17)

i=1j=1k=1

l J K
w(x,y,2)= Y, 3, > WuF¥(x)G} (D) HY (2) (18)
i=1 j=1k=1

where m=i+I*(j —1)+1*J*(k-1).

u
InEgs. (16) F*(x), Cj (¥) and H, ]Lé (z) are the displacement approximation functions for
the u-displacement field for the rectangular brick element in the x-, y-, and z- directions,

respectively. Similarly, in Eqs. (17) F}’(x), G;/(» and H]Z (z) are the displacement
. . ) . . w G¥ ()
approximation functions for the v-displacement field, and in Egs. (18) F;" (x), “J

and HJ (z) are the displacement approximation functions for the w-displacement field
for the brick element in the x-, y-, and z- directions, respectively. Also, in Egs. (16)-(18)
I, J and K are the upper summation indices for the terms retained in the displacement
approximations in the x-, y-, and z- directions, respectively. It may be noted that the
largest value of the upper summation indices I, J or K determine the order of the variable-
order solid element. For the special case of /=J= K= M the order of the variable-
order rectangular solid element is represented by the value of M. Equations. (16)-(18)
represent a general form in which various polynomial approximations such as Lagrange,
Legendre, Bernstein, B-splines, etc., or trigonometric functions or their combinations
thereof can be used to approximate the displacement field for the rectangular brick
element.

The test space of the virtual displacement field of the brick element is taken as the same
space used for the actual displacement field. This results in a symmetric stiffness matrix
for the element. Thus, the virtual displacements for the brick element are written as

&u(x,y,2) € 8U,F, ()G (v)Hy (2)} (19
&v(x,y,2) € {8V, Fy (x) Gy () Hy (2)} (20)
1)

Sw(x,.,2) € B, Fy (1)Gy D) B )}

where p e {12,...1},g € {1.2,...J}, re{l2,...,K}and n=p+I*(g-1)+I1*J*(r-1).
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3.1.2 Cylindrical brick element

Figure 3.2 shows a cylindrical brick element in the Cylindrical (x, 6, z) coordinate system.
Replacing coordinate variable y by 6 in Eqs. (1), (2) and (4)-(21) for the rectangular brick
element results in the generalized displacement vector, constitutive law, virtual work
functional, and the actual and virtual displacement fields for the cylindrical brick element.
Further, in Eq. (15) the term dy is now replaced by (R+z) d6, where R is taken as the
radius of curvature of the lower surface of the cylindrical brick element (see Fig. 3.2). The
strain-displacement relations for the cylindrical brick element are given below.

X=X = 4 9m+1 - em = @; Zn+] = Zp = h.

Fig. 3.2 A cylindrical solid element in a global Cylixidrical (x, 6, 7) coordinate
system.

3.1.2.1 Strain-displacementrelations

Based on the discussion given above, the generalized strain vector for the cylindrical brick
element is written as

g =[x 38665822’7929735237)@]7‘ (22)

Assuming small displacements and displacement gradients, the three-dimensional strain-
displacement relations for the cylindrical brick element are
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3.1.3 Solid wedge element

Figure 3.3 shows a solid wedge element in the Cartesian (x, y, z) coordinate system.
Equations (1)-(11) describing the displacement field, strain-displacement relations,
Hooke’s law and principle of virtual work for the rectangular brick element are also
applicable to the solid wedge element. Other details for the solid wedge element are
described in the following paragraphs.

X1+1

Xpo] =% = & Vs =Y = b Zpey -2, = h.
Fig. 3.3 A solid wedge element in a global Cartesian (x, y, z) coordinate system.

3.1.3.1 Externalwork due to surface tractions

The solid wedge element has five faces instead of six as compared to the rectangular brick
element described earlier. As shown in Fig. 3.3 the five wedge surfaces (or faces) are
X=X, 2=2,, Y=Ymu V=Yms and the inclined face where all the three coordinates

may vary. However, at the inclined face the two variables x and z are related to each other
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by the expression

z=xtanf,,, - 24)

where 0, = tan_l(?z-iiJ is the wedge angleas shown in Fig. 3.3. In Eq. (11) the
I+1 —H

external work term for the wedge element due to the applied surface tractions is given by

_[ _[ T; - dudS

= H b 020, ,2)+ 5h (0,2 B0 (.9,2) + 52 (0,2 )60 oy, 3,2 e
H [xy(x z)Su(x ym,z)+ (x z)8v(x, ym,z)+ szy(x z)Sw(x ym,z)]lxdz (25)
+ H Exy I(x, z)Su(x ym+1,z)+s I(x, z)8v(x ym+1,z)+s I(x, z)8w(x,ym+1,z)]ixdz

Sm+1

+ H Lt Geo B2+, e Jv(r. 3.2, Yo 52 G o y,2, iy

. H Top il scc,dly

In Eq. (25) quantities 7,5, Oii,pand S,prepresent the traction vector, virtual

displacement vector and surface area of the oblique (or inclined) surface, respectively.
Thus, Eq. (11) in conjunction with Eq. (25) provides the complete statement for virtual -
work for the solid wedge element.

3.1.3.2 Displacement approximations

As mentioned earlier, the displacement field for the wedge element has a different form
than the one used to approximate the rectangular brick element. The actual displacement
field for a solid wedge element (see Fig. 3.3) is assumed in the triple series as

I J K
wxy,2)= Y, D, D UnFl (x,2)HY(3) (26)
i=1 j=lk=1
I J K
Wx5,2)= 2 3, D VnFR (5,2 H} () @7
i=1j=1k=1
I J K
Wx,y,2) = X, 2, 3 W Fif (x,2)HY () | (28)
i=1j=1k=1

where m=i+1*(j—1)+1*J* (k=1),] -i—k+120.

Note the coupling of the displacement approximation functions between x- and z-
coordinate directions. This is also obvious from Eq. (24) also where x- and z- coordinates
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are dependent on each other. Due to the inherent coupling of the displacements, and
therefore strains and stresses, in the two coordinate directions, it is felt that the wedge
elements might be more suitable to analyze composite laminates with angle-plies. (It may
be noted that the wedge element described here can also have coupling in the x-y or the y-z
planes by a simple exchange of the coordinate variables in Eqgs. (26)-(28) for the
displacements.)

The test space for the virtual displacement field of the wedge element is taken as the same
space used for the actual displacement field. Thus, the virtual displacements for the solid
wedge element are written as

8u(x,y,2) € {8U, Fpp(x,2) Hy (1)} (29)
ov(x,y,2) € {SVnF;r (x,z)H;(y)} (30)
Sw(x,,2) € (W, Fp, (x,2)Hy (1)} @31

where p € {1,2....,I},g € {1,2,....J}, r € {1.2,...,K} and
n=p+I*(q-D+I1*J*@r-1),I-p-r+120.

3.1.4 Singular brick element

Figure 3.4 shows a rectangular brick element with a crack face (denoted as singular brick
element) in Cartesian (x, y, z) coordinate system. The mathematical formulations
presented earlier (see Eqgs. (1)-(21)) for the rectangular brick element are also applicable
for the singular brick element. However, for the singular brick element the displacement
field is approximated such that the strains and therefore, the stresses at the crack tip are
singular in nature. It may be noted that the development of a singular cylindrical brick
element from a singular rectangular brick element involves essentially the same changes as
described earlier in the section on the mathematical formulations for the cylindrical brick
element. This topic will be discussed in detail in the subsequent works where numerical
examples and the displacement approximations for singular brick elements will be
presented.
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Crack face

Crack tip el

.

Fig. 3.4 A rectangular solid element with a crack face having stress singularities at
the crack tip.

3.1.5 Formulation of stiffness and load matrices

The displacement-based finite element analysis can be regarded as an extended Ritz
analysis.>> Thus, the convergence properties and numerical advantages associated with .
the Ritz method are also applicable to the finite element method. In the Ritz analysis the

displacement approximations (e.g., F;*(x), Gjl'l (¥) and H ;l: (2), etc., in Eqs. (16)-(18))
are required to satisfy any enforced kinematic constraints (also known as the essential
boundary conditions) on the element. Further, the displacement approximation functions
are assumed to be linearly independent in each coordinate direction, and also represent the
generaland the particular solutions of the structural problem under consideration. Thus,
the set of linearly independent displacement approximation functions givenin Egs. (16)-
(18) form the basis or the fundamental system of solutions for the solid element subjected
to arbitrary kinematic and static boundary conditions and external loads. These
displacement approximation functions are also called the displacement basis functions.
The procedure for obtaining the stiffness matrix and load vector of a typical rectangular
brick element is outlined next. Unless otherwise noted, most of the discussion given here
applies to other variable-order elements as well. A similar procedure can be adopted to
obtain the stiffness and load matrices of other variable-order elements.

It is conventional to obtain the stiffness matrix and load vector of an element in a non-

dimensional, local coordinate system. This ensures that an element is representative of a
typical element located anywhere in the structure. Figure 3.5 shows a rectangular element
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. . . X—x
in Cartesian (&,m,{) non-dimensional, local coordinate system, where §=( p 1)3

n= (y —by ”‘) and { = (z—hzn ) All other 3-D solid elements can be similarly represented

in a non-dimensional, local coordinate system. The Egs. (3) for strain-displacement
relations in conjunction with the actual and virtual displacements approximations given
by Eqgs. (16)-(18) and Egs. (19)-(21), respectively, are substituted into the virtual work
functional given by Eq. (11). Then, the integration over the brick volume is performed.

C n

A

=1

C#g%

Fig. 3.5 A solid rectangular element in a non-dimensional, local Cartesian (&, 1, {)
coordinate system.

This process results in a 3*(/+1)*(J +1)*(K +1)system of linear simultaneous
equations which can be written in the compact form as

A ¥y = BS +B% + BP | (32)

Equation (32) represents the general form of linear simultaneous equations for the
variable-order element subjected to mechanical and hygrothermal loads. In Eq. (32) X, is

the vector of unknown displacement coefficients (or generalized coordinates) , and is
given by

fm =[-’-5u’£va55w] : (33)
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where
x, =[U,Us,....U p1, X, =MVase sV gls X, = (MW, ... W],

and M= (I+1)*(J+1)*(K+1). It may be noted that the variable-order wedge element

would have less unknown displacement coefficients (or generalized coordinates) as
compared to the other three variable-order elements.

The matrix fnm in Eq. (32) is the stiffness matrix. The stiffness matrix .Tnm is square,
symmetric and positive definite. It may be noted that each row in the stiffness matrix
4, corresponds to a specific term in the virtual displacement field approximation, and

each column in the stiffness matrix 4,,, corresponds to a specific term in the actual
displacement field approximation of the brick element. The coefficients A j of the
stiffness matrix are dependent on the geometry and material properties of the element.
- Explicit forms of these coefficients are given in Appendix B, C and D for the 3-D
rectangular, cylindrical and wedge solid elements, respectively. For most types of
assumed displacement basis functions, the integrals given in the Appendices B, C and D

can be very accurately evaluated either analytically or using an appropriate numerical
integration scheme. The coefficients Aj; described in Appendix B, C and D are used to

compute the unrestrained stiffness matrix 4, nm for the 3-D rectangular, cylindrical and
wedge solid elements, respectively.

The first term on the right-hand side of Eq. (32) is the force vector obtained from the
external virtual work terms (Eq. (15)) due to the applied surface tractions. The elements
By, n=12,.3*(I+1)*(J+1)* (K +1) of the force vector Ef, are dependent upon the
magnitude and distribution of applied surface tractions at the element faces. As is evident
from Eq. (15), first the applied surface tractions at a particular face are multiplied by the
assumed virtual displacement field evaluated at that surface. Then, the resulting product is
integrated over the surface area to obtain the contributions of these surface tractions to
the external virtual work vector 3;9, for the brick element. Depending upon the

distributions of the applied surface tractions and assumed virtual displacement field, the
evaluation of the integrals of external virtual work terms in Eq. (15) can be either very
simple and performed analytically, or can be extremely complex and may require a

numerical integration scheme. The elements of the vector B are obtained from the

second term on the right-hand side of the virtual work functional, Eq. (11), and represent
the contribution of the applied temperature distributions in the element. Similarly, the

vector Ef is obtained from the third term on the right-hand side of Eq. (11), and is
contribution due to the change in moisture content of the element. Once again, as is
evident from Eq. (11), the integrals of terms appearing in the vectors E,‘f and B ff can be
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either simple or complex to evaluate depending upon the distributions of the temperature
and moisture content and the assumed virtual displacement field for the element. For
uniform applied surface tractions on the face or for a uniform change in temperature or
moisture content of the brick element, the integrals of the terms appearing in the force
vector BS or the vectors B and Ef are simply the integrals of the assumed
displacement functions or their first derivatives in the x-, y- and z-directions. In view of
the above discussion, the explicit general forms of the terms appearing in the force vectors
BS, B and E;? are not considered very useful, and hence, are not described here.
However, these terms will be described when presenting the specific numerical examples.

3.1.6 Boundary conditions for the element

The kinematic (or essential) and static (or natural) boundary conditions for the rectangular
brick element subjected to applied surface tractions as shown in Fig. 3.1 are derived here.
(A similar procedure can be used to obtain the kinematic and static boundary conditions
for other elements as well.) Using Eq. (8) in conjunction with Egs. (9) and (10), the

statement of virtual work for the rectangular brick element can be written as
T = 1, _ = - 5 am .
I}, %78y = Hs,- T;-5a; s+ [[[, B-8uav | i=12..6. (34)

Using Eqs. (2) and (4) for the generalized strain and stress vectors, substituting the strain-
displacement relations, Egs. (3), and integrating by parts, the Eq. (34) in conjunction with
Eq. (15) results in three equations of equilibrium and a boundary integral term. The three
well-known equations of equilibrium are

96,, OC0yx 0Cy

. + 5 + 5 +B =0

oo J0c o0 '
xy Py Pz _

anz aGyz anz _

x Ty T T30

The condition that the boundary integral term must vanish at the external surfaces results
in six sets of kinematic and static boundary conditions for the six faces of the brick
element. It may be noted that the virtual displacements are continuous single-valued
functions of the spatial coordinates, and vanish on the surfaces on which the
displacements are prescribed. The kinematic (or essential) and static (or natural) boundary
conditions for the elemental brick are given below: ’
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Atthe face x = x;:
prescribe # or G, = s,lcx but not both

. )
prescribe v or Oy, = s, but not both

prescribe w or G,, = séx but not both

Attheface x = xp,;:
prescribe # or G, = s,’;; ! but not both

prescribe v or 0y, = si,'xH but not both

prescribe w or G, = sg ! but not both

Attheface y = y,,:

prescribe u or G, = 55, but not both
. -

prescribe v or ©,,, = sy, but not both

- —_—oin
prescribe w or G, = sz, but not both

Attheface y =y,

prescribe u or Gy, = spF ! but not both

prescribe v or Gy, = s 1 but not both

prescribe w or G, = sz’;’,“ but not both

Atthe face z = z,:
prescribe u or G, = s, but not both

prescribe v or G, =}, but not both

prescribe w or G,, = s}, but not both

Attheface z=z,,:
prescribe u or G, = 57 but not both

prescribe v or G, = s} but not both

prescribe w or G, = s*! but not both
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In the boundary conditions given by Eqgs. (36)-(41) the spatial coordinates are omitted for
the sake of convenient representation. Thus, in Eqgs. (36)-(41), it is implicit that the
displacements, stresses and applied tractions are evaluated at spatial coordinates of the
face on which they are prescribed. In the variational analysis the equations of equilibrium
given by Egs. (35) and the static (or natural) boundary conditions listed in Eqs. (36)-(41)
are satisfied in the weak sense. In other words they are satisfied in the integral sense in
the domain, and not point-wise. Whenever the kinematic boundary conditions at the
external surfaces of the brick element are prescribed the system of equations for the brick
element, Eq. (32), is modified. This is due to the fact that the virtual displacements vanish
on the external surfaces on which the displacements are prescribed. The modified
stiffness matrix is called the restrained stiffness matrix of the element.

Equations (1)-(41) form the basis of the three-dimensional, linear elastic analysis of the
structures using variable-order rectangular, cylindrical, wedge and singular solid elements.
The stiffness matrix and the load vectors for a variety of displacement approximation
functions such as Chebyshev, Lagrange, Legendre, and B-splines, Bernstein polynomials,
trigonometric functions, etc., or their combinations thereof can now be obtained.

3.2 NUMERICALEXAMPLES

Based on the mathematical formulations presented in Section 3.1 a computational
algorithm in FORTRAN has been developed for three-dimensional analysis of structures
using variable-order rectangular and cylindrical solid elements. The Bernstein
polynomials are employed to approximate the elemental displacement field of variable-
order rectangular and cylindrical solid elements in the three coordinate directions. The
computer program called SAVE is currently implemented on the Cray high performance
computer to run large-scale structural analysis.

Several benchmark examples were analyzed using the SAVE program. Here, results are
presented for a select few by comparing the solution obtained from the present analysis
using variable-order rectangular and cylindrical solid elements with those givenin the
open literature. In the SAVE computer program the accuracy of the solution can be
improved either by increasing the order M of the variable-order element or by using more
variable-order elements in the discrete representation of the structure or by using a
combination of both. This aspect of the variable-order elements is also amply
demonstrated by analyzing some benchmark problems in multiple ways.

In the following subsections, first, a brief discussion is provided on the Bernstein
polynomials employed as displacement approximations for the structural analysis. Next
several numerical examples are presented demonstrating the accuracy and effectiveness of
the variable-order rectangular and cylindrical solid elements in the thermomechanical
analysis of structures composed of isotropic and orthotropic materials. The advantages
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and limitations of the variable-order rectangular and cylindrical solid elements are also
discussed.

3.2.1 Bernstein polynomials as displacement functions

In general, the Bernstein polynomials belong to the family of Bezier curves.”® The use of
Bernstein polynomials (or Bezier functions) in solving the structural mechanics problems
seems to be fairly recent. Perhaps, Singh® was the first author to use Bezier polynomials
in the structural analysis problems. Singh studied the free-vibration of shells of revolution
using Bezier polynomials as displacement approximations. Kumar and Singh® employed
quintic Bezier (Bernstein) polynomials to approximate the circumferential displacement
field in the free vibration analysis of non-circular cylindrical shells. For the purpose of
analysis Kumar and Singh® divided the cylindrical shell surface into a finite number of
segments and enforced C°, C!, and C? continuities on Bernstein polynomials so as to
achieve the continuity of displacements, slopes and curvatures, respectively, between
different segments of the cylindrical shell surface. A detail discussion on the methodology
to achieve various orders of continuity using Bernstein (Bezier) polynomials is given in
Ref. [60]. Kumar and Singh® also pointed out that Bezier functions offer easy
incorporation of the boundary conditions and provide higher accuracy of the solution
with lesser number of unknowns.

Bogdanovich, Pastore and Deepak® and Bogdanovich and Deepak®? employed Bernstein
polynomials in the thickness direction to study the three-dimensional state-of-stress in -
the laminated composite plates using various analytical approaches based on the energy .
principles. In these works simply-supported, laminated composite plates subjected to :
transverse bending loads were analyzed. The double Fourier Series was used to
approximate the displacements and/or stresses in the inplane directions. The Bemnstein
polynomials were used to approximate the displacements and/or stresses in the thickness
coordinate direction. The problem was essentially reduced to a one-dimensional problem
requiring discretization of the structure in the thickness direction only. Bogdanovich, et
al.8-%2 presented numerical results by varying the degree of Bernstein polynomials in the
thickness directions and achieving the convergence of numerical results as well as the
required continuity of stresses across the interfaces of various layers of the laminated
structure.

Bogdanovich and Rastogi®® employed Bernstein polynomials to approximate the
displacement field in all three coordinate directions and studied the three-dimensional
state-of-stress in bonded composite plates. In this work the generalidea of a 3-D brick-
type rectangular mosaic parallelepiped aimed at the stress analysis of inhomogeneous
materials and structures, proposed in Bogdanovich,* was utilized to analyze bonded
composite plates subjected to uniaxial extension. Bogdanovich and Rastogi®® employed
three-dimensional formulations based on the principle of minimum potential energy, and
presented numerical results for the case when the displacement field in each rectangular
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brick was approximated by cubic Bernstein polynomials in all three directions.

In the mathematical formulations presented in Section 3.1 for the variable-order
rectangular and cylindrical solid elements, the elemental displacement field in a non-
dimensional ( £,1,{) coordinate system is approximated in the triple series as (Eq. (B-3);

Appendix B)

1 J K _ 4 )
u(&,m,0) = z 2 zUmFi (&.,)Gj (WH, © (42)

i=1j=lk=1
where m=i+I*(j—1)+1*J*(k—-1) and %=[u,v,w]" .

Since the displacement-based finite element analysis can be regarded as an extended Ritz
analysis,>? the convergence properties and numerical advantages associated with the Ritz
method are also applicable to the finite element method. In the finite element analysis the
monotonic convergence of the numerical solution is achieved if the elements are complete
and compatible.’? The requirement of completeness means that the displacement

functions F; (€), Gj(Mand H(§) in Eq. (42) must be able to represent the rigid body -
displacements and constant strain states of the element. The compatibility requirement is
fulfilled when these displacement functions are continuous within the elements and across
the element boundaries. Thus, no gap occurs between the element boundaries when the
assembly is performed. The rate of convergencedepends upon the type of polynomial |
functions used in the displacement approximation, and generally, the use of complete
polynomials are most desirable.%® When the displacement functions F; ®), Gj(M) and
Hi(©) in Eq. (42) are assumed as Bernstein polynomials, all the requirements of
completeness and compatibility are identically fulfilled.

The Bernstein polynomials, denoted as B{ (1), are expressed as*®
FOPN R A WPRESN Sy
Bliy=|" [Fa-nf,i=0,..,I (43)
i
Further, Bernstein polynomials form a partition of unity™s, i.e.,
/ .
,ZOB,R»El (44)
i=

This property of Bernstein polynomials is extremely important and simplifies the
application of various kinematic boundary conditions. Incidentally, Eq. (44) is also
identical to the condition imposed on shape functions to satisfy the completeness
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requirement®” in the finite element analysis. Thus, approximating the displacement

functions F; (€), Gj(Wand H; (¥) in Eq. (42) by Bernstein polynomials B/(f) given
by Eq. (43) identically fulfills the requirements of completeness as described earlier. It
may be noted that in fact this completeness requirement is satisfied for any arbitrary

degree of Bernstein polynomials (i.e., irrespective of the value of the summation index / in
Egs. (43) and (44)).

In the displacement-based three-dimensional analysis using solid elements the
compatibility requirement is automatically fulfilled when the interelement continuity of
the three displacements, u, v, and w, is enforced.””> The property of Bernstein

polynomials that B{(0)=1, BJ(1)=1 and Bf(0)=B/(1)=0, i=1,..,]-1 makes it
fairly easy to enforce the interelement continuity of the displacements during the

assemblageof the elements. Thus, Bernstein polynomials are used to approximate the
displacement field of the variable-order rectangular and cylindrical solid elements.

The development of computational algorithm for the SAVE computer program is
currently based on the assumption that (i) the same type of displacement functions are
used to approximate all three components (u, v and w) of the displacement field given in
Eq. (42), and (ii) the same order of Bernstein polynomials are used in all the three
coordinate directions to approximate a displacement component, i.e., /=J=K.

3.2.2 Analysis of laminated plates using variable-order rectangular solid elements

- In this section the following three problems are analyzed using variable-order rectangular
solid elements:

(1) A simply-supported [0/90/0]r laminated plate subjected to sinusoidal loading on the
top surface. The numerical results as obtained from the present analysis are compared
with those obtained by Pagano® using exact three-dimensional elasticity formulations.

(ii) A [0/90]s laminated plate subjected to uniaxial extension. A comparison of the
interlaminar stress solution as obtained from the present analysis is made with that
obtained by Pagano.’

(iii) A [0/90]s laminated plate subjected to thermal loads.

In all the three numerical examples studied the layers are assumed to be of equal
thickness. '
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3.2.2.1 Transverse bending of a laminated plate

Fig. 3.6 A simply-supported [0/90/0]y laminate subjected to sinusoidal loading on
the top surface.

A simply-supported [0/90/0]y laminated plate subjected to sinusoidal loading on the top
surface (see Fig. 3.6) is analyzed using one variable-order rectangular solid element in x-
and y-direction each and one variable-order rectangular solid element per layer in the z-
direction. Henceforth, this discretization of the laminated plate would be denoted as
1x1x3 mesh. The benchmark solution to this problem was presented by Pagano.®® The
origin of the right-handed coordinate system is chosen at the corner of the middle surface

h h
of the plate, ie.,, 0<x<a, 0<y<bh and _ESZSE (see Fig. 3.6). The simply-
supported laminated plate is subjected to the folldwing global kinematic boundary

conditions:

u(x,0,z) =u(x,b,2)=0; v(0,y,2) =va,y,z)=0;and
w(0,y,2) = w(a,y,z) = w(x,0,2) = w(x,b,z) =0. 45)

As is shown in Fig. 3.6 the laminated plate is subjected to external sinusoidal load on the
top surface of the 0° ply. In other words only the variable-order rectangular solid
element representing the 0° ply is subjected to an applied surface traction given by
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. LT .
s (x,) = qoSm<7)Sm(%) (46)

Thus, in Eq. (15) the only nonzero external force is s7" ! (x,y)applied at z=2z2,, = 3 on
the surface S,.;, and for this numerical example Eq. (15) for the variable-order

rectangular solid element representing the 0° ply reduces to

- ba T h
J17;- 735 = | [qoSin(=)Sin(=)0w(x,y,z)ddy @7
S; 00

Thus, in Eq. (32) the force vectors B = EE = ( for all the elements, and the force vector

E; would receive non-zero contributions only from the variable-order rectangular solid

element representing the 0° ply. These non-zero terms are computed from Eq. (47) above.
For the purpose of analysis a square laminate is assumed i.e., @ = b in Fig. 1. The material
properties for the lamina are taken from Ref. [66] as

E, =25 Msi, E; = E; = 1.0 Msi, G2 = Gy3 = 0.5 Msi, Gy; = 0.2 Msi,
V2=V13= V3= 0.25 (48)

The results obtained from the present 3-D analysis using the variable-order rectangular
solid elements are compared with those obtained by Pagano® using closed-form solution -
approach. These are presented in Tables 3.1 and 3.2. The normalized stresses used in
Tables 3.1 and 3.2 are described below:

— S ) —
O'xx=°xx/(9'052)> Oyy =03y /(405" ), Czz=0Czz/40,

—— 2 — —
Txy = Txy/ (90s™), Txz = Txz 1 (905), Tyz = Tyz/(409) » (49)

where s =a / h. Table 3.1 shows the improvement in the accuracy of the solution as the
order of the variable-order rectangular solid elements is increased from M = 3 to M = 6.
For M = 3 the displacement field in the variable-order rectangular solid element is
approximated by cubic Bernstein polynomials, i.e., I =J =K =3 in Eq. (42). Similarly,
for M = 6 the displacement field in the variable-order rectangular solid element is
approximated by the sixth degree Bernstein polynomials (I =J =K =6 in Eq. (42)).
During the analysis the mesh design was kept fixed at 1x1x3. The solution obtained from
the present analysis using variable-order rectangular solid element with M = 6 shows
excellent agreement with the exact solution of Pagano (see Table 3.1). Note the

N h
numerically small values of quantity ., at the unloaded surface, i.e., at z= -5 In
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: . h
order to satisfy the traction free static boundary condition at the surface z = —5 the

stress component G, (= 55z ) should be identically zero at this surface. In the present

analysis, this static boundary condition is not enforced a priori. Rather, at the converged

solution this condition is satisfied in the week sense. Similarly, from Table 3.1 it can be
— h

seen that the quantity G,, attains a unit value at the loaded surface, Z=5, for the

converged solution corresponding to M = 6. Thus, the converged solution provides a very

high accuracy for this boundary condition, G, = S?Z'H at z=§, without it being
enforced a priori in the solution. Some more numerical results obtained for various a/h
ratios using variable-order rectangular solid elements with A/ = 6 and with the mesh
design 1x1x3 are presented in Table 3.2. It can be seen that the results obtained from the
present 3-D analysis using variable-order rectangular solid elements (M = 6) are
practically identical to the results obtained by Pagano® for various a/4 ratios.

Table 3.1. Comparison between the results obtained from (a) the present 3-D analysis
performed with one variable-order rectangular solid element each in x- and y- directions
and one variable-order rectangular solid element per layer in the z-direction, and (b)
those obtained by Pagano [1970] for a [0/90/0]r simply supported, laminated plate (a = b
= 4h) subjected to sinusoidal loading on the top surface (see Fig. 3.6).

QUANTITY M=3 M=4 M=35 M=6  Pagano[1970]

32(%%—-;1) 0.00930  0.00223  0.00051  0.00004 0.0
A _12)_ , _g_) 09266 09967  0.9983  0.9999 1.0
3;(%, gg) 0.699 0.740 0.798 - 0.801 0.801
g;(g,g,_g) -.659 -0.786  -0.752  -0.754 -0.755
3;(%,%%) 0.471 0.523 0532 0.534 0.534
c—,—};(_;i,g,_g) -0.491 -0.545  -0.534  -0.556 -0.556
T 0,0 g) -0.0662  -0.0506  -0.0506  -0.0511 -0.0511
T 0.0~ g) 0.0652  0.0501  0.0500  0.0505 0.0505
(0, ;_,o) £ 0.291 0.254 0.254 0.256 0.256
H(200) 03166 02160 02127 02172 0.2172
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Table 3.2. Comparison between the results obtained for various a/h ratios (a) from the
present 3-D analysis performed with one variable-order (M = 6) rectangular solid
element each in x- and y- directions and one variable-order (M = 6) rectangular solid
element per layer in the z-direction, and (b) by Pagano [1970] for a [0/90/0]; simply
supported, laminated plate (a = b) subjected to sinusoidal loading on the top surface (see

Fig. 3.6).

QUANTITY ah=2 ah=4 a/h=10 ah=50  a/h=100
o e (@) 1436  (2) 0.801  (a) 0.590  (a) 0.541  (a) 0.539
2272 (b) 1.436  (b) 0.801 (b) 0.590  (b) 0.541 (b) 0.539
oLl (2)-0.937 (2)-0.754  (2)-0.590  (a)-0.541  (a)-0.539
22 2 (b)-0.938  (0)-0.755  (b)-0.590  (b)-0.541  (b)-0.539
so@.b b (8 0.668  (a) 0.534  (a) 0.284  (a) 0.184  (a) 0.181
Y2726 (b) 0.669  (b)0.534  (b)0.285  (b) 0.185  (b) 0.181
so@.b_h (2)-0.742  (a)-0.556  (a)-0.288  (a)-0.185  (a)-0.181
272 6 () -0.742  (b)-0.556  (b)-0.288  (b)-0.185  (b)-0.181
%00 g) (2)-0.0859  (2)-0.0511 (a)-0.0288 (a)-0.0216 (a)-0.0214
(b) -0.0859 () -0.0511  (b)-0.0289 (b)-0.0216 (b) -0.0213
(00~ hy (@) 0.0702  (2)0.0505  (a)0.0290  (2)0.0216  (a)0.0214
2 (b) 0.0702 () 0.0505  (b)0.0289  (b) 0.0216  (b) 0.0213
—0.20 (2)0.164  (@)0256  (a)0.357  (a)0.393 (a) 0.395
2 (0164 (10256  (b)0.357  (b)0.393  (b)0.395
TH%00) (@)0.2591  (2)0.2172  (2)0.1228  (a)0.0842  (a) 0.0828
2 (b)0.2591  (b) 02172  (b)0.1228  (b) 0.0842  (b) 0.0828

3.2.2.2 Uniaxial extension of a laminated plate

Fig. 3.7 [0/90]s laminate subjected to uniform axial extension.
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This example problem involves the analysis of interlaminar stresses in a [0/90]s laminated
plate subjected to uniaxial extension (see Fig. 3.7) using variable-order rectangular solid
elements. The solution to this classical problem was presented by Pagano®’ in 1974. Later
on Pagano and Soni® also solved this problem using a global-localvariational model. The
focus of this example problem is to study the continuity of interlaminar stresses at the
0/90 interface of the [0/90]s laminated plate subjected to uniaxial extension. For this
purpose a series of systematic analyses were performed so as to achieve an accurate and
converged numerical solution. The analyses were performed either by increasing the
number of variable-order rectangular solid elements in the mesh while keeping the order
M of the variable-order rectangular solid elements constant or by increasingthe order M
of the variable-order rectangular solid elements without changing the number of variable-
order rectangular solid elements in the mesh. Here the final results are presented for the
following three analyses performed using

(i) 1x12x8mesh (i.e., one variable-order rectangular solid element in the x-direction, 12
variable-order rectangular solid element in the y-direction and 8 variable-order
rectangular solid element in the z-direction) with M= 3 (d.o.f = 9,002),

(ii) same mesh design as in (i) above but with M =4 (d.o.f=20,0611), and

(iii) 1x20x12 mesh (i.e., one variable-order rectangular solid element in the x-direction, 20
variable-order rectangular solid element in the y-direction and 12 variable-order
rectangular solid element in the z-direction) with M= 3 (d.o.f = 22,178).

Due to the symmetry of the geometrical and material properties and the applied loading, -
only 1/8" of the configuration of the [0/90]s laminated plate (@ = b = 4 A, see Fig. 3.7)
need be analyzed. The uniform extension of the laminated plate is achieved by applying a
uniformaxial displacement at the ends x = a. For the purpose of analyses the following
lamina elastic constants are taken from References [67,68].

E] =20 MSi, Ez = E3 =2.1 MSi, G12 = G13 = G23 =0.85 MSi, V=V 303~ 0.21 (50)

The distributions of interlaminar stresses as obtained from the three analyses are plotted
along the y-direction at x/a = 0.5. All the stress components are normalized by the applied
axial strain. The distributions of the transverse normal stress G, as obtained from the

three analyses at the mid surface of the [0/90]s laminate in the 90° layer are shown in Fig.
3.8. As shown in Fig. 3.8 the distributions of the transverse normal stress G, as

obtained from the three analyses are essentially the same. The normalized peak value of
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Fig. 3.8 Distributions of transverse normal stress G,, at the mid plane of a [0/90]s
laminate subjected to uniform axial extension.

0.3 Msi for this stress component, which occurs at the free edge y/b = 1, compares very
well with those obtained by Pagano®’ and Pagano and Soni®.

Next the attention is turned to the interface of 0/90 layers where achievingthe continuity
of the transverse normal stress G, and the transverse shear stress Tyz is of special

significance. The distributions of the normalized transverse normal stress component G,

as obtained from the three analyses at the interface of the 0/90 layers are shown in Figs.
3.9-3.12. The first look at Fig. 3.9 suggests that the continuity of the transverse normal
stress component G, is satisfied extremely well all along the y-direction for the analysis
performed using 1x12x8 mesh with M = 3. (Similarresults were obtained from the other
two analyses as well, but are not presented here to save space.) However, a
closer look at the distributions of the transverse normal stress component 6, in the 0°
and 90° layers at the interface of 0/90 layers in the vicinity of the free edge,
0.95<y/b<1.0, show that somewhere in the vicinity of y/b=0.98 the two curves
representing the stress values in the 0° and 90° plies start to separate with some
oscillations encroaching into the solution (see Fig. 3.10). A similar conclusion can be
drawn regarding the distributions of the transverse normal stress component G, in the 0°
and 90° layers at the interface of 0/90 layers in the vicinity of the free edge as obtained
from the analysis performed using 1x12x8 mesh with M = 4 (see Fig. 3.11), except that
the two curves now start to separate around y/b= 0.988. While there is more than
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Fig. 3.9 Distributions of transverse normal stress c,; at the 0/90 interface of a
[0/90]s laminate subjected to uniform axial extension (1x12x8 mesh with M = 3).
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Fig. 3.10 Distributions of transverse normal stress G,; in the close vicinity of the
free-edge at the 0/90 interface of a [0/90]s laminate subjected to uniform axial
extension (1x12x8 mesh with M = 3).
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Fig. 3.11 Distributions of transverse normal stress ¢,, in the close vicinity of the

free-edge at the 0/90 interface of a [0/90]s laminate subjected to uniform axial
extension (1x12x8 mesh with M = 4).
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Fig. 3.12 Distributions of transverse normal stress ¢,, in the close vicinity of the

free-edge at the 0/90 interface of a [0/90]s laminate subjected to uniform axial
extension (1x20x12 mesh with M = 3).
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twofold increase in the degrees of freedom between the two analysis, there does not seem
to be a whole lot of improvement in the solution of the problem. Next, Fig. 3.12 shows
the distributions of the transverse normal stress component G, in the 0° and 90° layers

at the interface of 0/90 layers in the vicinity of the free edge, 0.95<y/b<1.0, for the
analysis performed with 1x20x12 mesh with M = 3. As is shown in Fig. 3.12 the
continuity of the transverse normal stress component G is satisfied extremely well in
this analysis, even in the extreme vicinity of the free edge 3/b = 1. The two curves tend to
separate only around y/b= 0.994 and all the oscillations observed in the earlier solutions
have gone. Here, it is extremely important to mention that the numerical values of the
transverse normal stress component G, used to create the plots in Figs. 3.9-3.12 (and

for all the other plots presented in this work) are the frue values as obtained from the
different variable-order rectangular solid elements meeting at a material point in the
discretized structure. In other words these values are not averagedin any way from the
two or more adjacent elements as is normally done in many standard FE programs. Thus,
the results presented here are all the more accurate.

Similar observations are also made regarding the distributions of the transverse shear
stress component T, from the three analyses in the vicinity of the free edge. Only the

distributions of the transverse shear stress component Ty, as obtained from the third

analysis (1x20x12 mesh with M = 3) are presented here as shown in Figs. 3.13-3.14. As
shown in Figs. 3.13 and 3.14 the continuity of the transverse shear stress component Ty,

at the 0/90 interface is satisfied extremely well all along the y-direction except in the
extreme vicinity of the free edge, 0.98<y/b<1.0. It has been observed that in the
vicinity of the free edge, the continuity of transverse shear stresses is more difficult to
satisfy as compared to the continuity of the transverse normal stress 0z, at the interface

of different layers (or materials).

The results presented above emphasize the importance of achieving a balance between the
order M and the number of the variable-order elements to be used to analyze a given
structural problem so as to achieve the desired accuracy in the converged solution. This
also justifies the need to use transition elements as described earlier. The variable-order
transition elements can be used to greatly reduce the degrees of freedom in the problem by
modelingthe regions of high stress gradients with the elements having order M higher
than that used for the elements in regions where stress response is fairly uniform,
simultaneously using transition elements in the intermediate regions connecting two
different order elements. Further, it is also shown that in a displacement-based analysis
using the variable-order rectangular solid elements, the continuity of stresses at the
interface of the elements of the same material or even of the different materials is achieved
with a very high accuracy without enforcing it a priori.
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Fig. 3.13 Distributions of transverse shear stress Tyz at the 0/90 interface of a

[0/90]s laminate subjected to uniform axial extension (1x20x12 mesh with M = 3).
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Fig. 3.14 Distributions of transverse shear stress 1 yz in the close vicinity of the free-

edge at the 0/90 interface of a [0/90]s laminate subjected to uniform axial extension
(1x12x8 mesh with M = 3).
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3.2.2.3 Restrained thermal expansion of a laminated plate

Next a [0/90]s laminated plate (a/b = 5, b/h = 10; see Fig. 3.7 for notations) subjected to
uniform thermal load AT = -100°C and restrained against expansion in axial direction is
analyzed using the variable-order rectangular solid elements. A 1x20x12 mesh with M/ =3
(d.o.f=22,178) is used to model and analyze the 1/8™ configuration of the structure. For
this numerical example the force vectors BS= EB =0 in Eq. (32) for all the elements, and

the force vector BY would receive non-zero contributions from all the 240 variable-

order rectangular solid elements. For the purpose of analysis the three-dimensional
thermomechanical properties of the lamina material are taken as E; = 20 Msi, E; = E; =
1.5 MSi, G12 = G13 = (0.8 MSi, G23 =048 MSi, Vp =3~ 03, Vy3 = 055, 0= 0.4e-6
/°C, 0 = a3 = 15.0e-6 /°C.

The distributions of non-zero stresses and displacements as obtained from the present
analysis at x/a = 0.5 at the 0/90 interface in the 0° and 90° layers are shown in Figs. 3.15-
3.19. As is shown in Fig. 3.15 the distributions of the normal stress Gy, in the 0° and 90°
layers are fairly uniform along the y-direction except in the vicinity of the free edge y/b =1
where this stress component shows a steep rise in the magnitude with high stress
gradients. The distributions of the other in-plane normal stress component Gy, in the 0°

and 90° layers along the y-direction are shown in Fig. 3.16. The normal stress component
Oyy should attain a zero value at the free edge so as to satisfy the traction-free static

boundary condition at the edge y/b = 1. However, as is the case with most FE based
numerical analyses, the solution from the present analysis also fails to exactly satisfy this
static boundary condition at the free edge at material interface. Figures 3.17 and 3.18
depict excellent continuity of transverse normal stress O, and transverse shear stress

Tyzs respectively, achieved from the present analysis at the 0/90 interface. The

distributions of the normalized displacements v and w along y-direction are shown in Fig.
3.19. The transverse normal displacement w shows a steep change in its magnitude in the
vicinity of the edge y/b = 1. :
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Fig. 3.15 Distributions of normal stress Oy, at the 0/90 interface of a [0/90]s
laminate subjected to uniform thermal loading.
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laminate subjected to uniform thermal loading.
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Fig. 3.17 Distributions of transverse normal stress G,, at the 0/90 interface of a
[0/90]s laminate subjected to uniform thermal loading.
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Fig. 3.18. Distributions of transverse shear stress 7,, at the 0/90 interface of a

[0/90]s laminate subjected to uniform thermal loading.
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Fig. 3.19 Distributions of transverse displacements at the 0/90 interface of a [0/90]s
laminate subjected to uniform thermal loading.

3.2.3 Analysis of cylindrical shells using variable-order cylindrical solid elements

In this section the following three problems are analyzed using variable-order cylindrical
solid elements:

(i) A simply-supported [90/0/90]r laminated cylindrical panel subjected to sinusoidal
loading on the top surface. The numerical results as obtained from the present analysis are
compared with those obtained by Ren®. .

(i) An infinitely long, thick, isotropic circular cylinder subjected to internal pressure. The
numerical results obtained from the present analysis are compared with those given in the
verification manual of the commercial software package I-DEAS” and also with the
plane-stress Strength of Materials (S.0.M.) solution.”!

(iii) A [0/90]r laminated cylindrical panel subjected to longitudinal extension.

In the numerical examples (i) and (iii) the orthotropic layers are assumed to be of equal
thickness.

3.2.3.1 Transverse _bending of a laminated cylindrical panel

A simply-supported [90/0/90]; laminated cylindrical panel subjected to sinusoidal loading
on the top surface (see Fig. 3.20) is analyzed using one variable-order cylindrical solid
element in x-and y-direction each and one variable-order cylindrical solid element per
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layer in the z-direction. The benchmark solution to this problem was presented by Ren.%
As shown in Fig. 3.20 the origin of the right-handed coordinate system is located at the
corner of the middle surface of the cylindrical panel, i.e., 0 x<a, 0<8< O and

< ) /

Fig. 3.20 A simply-supported [90/0/90]; laminated cylindrical panel subjected to
sinusoidal loading on the top surface.

N .
<z< R The simply-supported cylindrical panel shown in Fig. 3.20 is subjected to

(S I

the following kinematic boundary conditions:

u(x,0,2) = u(x,0,z) = 0; v(0,0,2) =v(a,0,z) = 0; and
w(0,0,2) = w(a,0,z) = w(x,0,2) =w(x,0,2)=0. (51)

The laminated cylindrical panel is subjected to an external sinusoidal load on the top
surface of the 0° ply. Thus, the variable-order cylindrical solid element representing the
0° ply is subjected to an applied surface traction given by

™ _ no
1 (x,8) = qoSin(—)Sin(5) (52)
. . ;;,+1 . h
Thus, in Eq. (15) the only nonzero external force is sz; ~(x,0) applied at z =2z, =7

on the surface S,,,;, and for this numerical example Eq. (15) for the variable-order
cylindrical solid element representing the 0° ply reduces to
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- a® M. T h
: é IT; - &;dS = {)é qoSm(;)Sm(-@—)Sw(x,G,E)(R + h)dOdx (53)
i

Further, in Eq. (32) the force vectors B,‘f =B E = ( for all the elements, and only the force

vector E;; for the variable-order cylindrical solid element representing the 0° ply will
contain non-zero terms computed from Eq. (53) above. The geometrical parameters for
the laminated panel are a/R = 5 and ® = ®t /3 radians (see Fig. 3.20). The lamina material
properties are the same as given in Eq. (48).

Table 3.3 shows the results obtained from the present 3-D analysis using variable-order
cylindrical solid elements and those obtained by Ren® for various R/ ratios. The
normalized quantities used in Table 3.3 are described below:

Oxx =0xx/(905%),  ©0=000/(405D),  Txo="Tx0/(0s>).

Txz = Txz /(905) Ter =102/ (905> w =100wE3 /(qoks4) ’ G4

where s = R/ h. The variable-order cylindrical solid elements with order M = 6 provided

. o i " h
a converged solution satisfying the static boundary conditions 6,, (= si) at z= -5

h
and 6,, = sl at 7==. Thus, only the numerical results corresponding to M = 6 are ~
zz = Szz 5 P

presented here. As shown in Table 3.3 the results obtained from the present analysis are
practically identical to the results obtained by Ren® for various R/4 ratios except for the
case when R/a = 50. The accuracy of the solution seems to get slightly reduced when very
thin (#/ R <<1)cylindrical solid elements are used in the analysis. This aspect of the

analysis using variable-order cylindrical solid elements needs further attention and will be
- subjected to more rigorous examination during future studies.
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Table 3.3. Comparison between the results obtained for various R/h ratios (a) from the
present 3-D analysis performed with one variable-order (M = 6) cylindrical brick element
each in x- and 6- directions and one variable-order (M = 6) cylindrical brick element per
layer in the z-direction, and (b) by Ren [1989] for a [90/0/90]r simply supported, finite
length (a/R = 5), laminated cylindrical panel subjected to sinusoidal loading on the top
surface (see Fig. 3.20). ‘

QUANTITY Rh=2 Rh=4 R/h=10 Rh=20  Rh=50
aen (a) 2638 (3 1252 (a) 0957 (a) 0.860  (a) 0.750
035 (b)) 2637 () 1252 (b) 0957  (b) 0.860  (b) 0.753
ol 8k @3 @158 @105  @-085  (@-0751
057727 (1)-3951  (b)-1.562  (b)-1.058  (b)-0.899  (b)-0.760
oG8k @015 @00306 (00170 () 00141 (@) 00152
=257 (b)0.1135 () 0.0306  (b) 0.0170  (b) 0.0141  (b) 0.0153
oC8 b @-00489 @-00170 (2)-0009 (2)-0.0068 (@)-0.0020
#3577 (b)-0.0489 (b)-0.0170  (b)-0.0099  (b)-0.0069 (b)-0.0021
—00h (2)-0.0350 (2)-0.00959 (2)-0.00310 (a) 0.00099  (a) 0.00939
xQL5S (b) -0.0350 (b)-0.00959 (b)-0.00310  (b) 0.00099 (b) 0.00943
00y  @007499 (2002564  (@001530 (2)0.01455  ()0.02030
x0T (9)0.07499  (b)0.02565  (b) 0.01531  (b) 0.01457  (b) 0.02040
087 @004574 (@001671  (@001063 (001032 (001427
=77 ()0.04575  (b)0.01672  (b) 0.01064  (b) 0.01034  (b) 0.01436
TClol @052 @053 ()0.509  (a)0.483  (a)0.411
84277 (6)0.552  (b)0.533 (6)0.510  (b)0.486  (b)0.426
7280 () 16723  (a)3.692 ()1.576  (@1.015  (2)0.770
2’2 (b) 16.728  (b) 3.69%4 (b)1.577 (1) 1.017  (b)0.774
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3.2.3.2 An infinite, thick isotropic cylindrical shell under internal pressure

=N

— |

Fig. 3.21 1/4™ configuration of a thick, isotropic cylindrical shell subjected to
uniform internal pressure.

In this example an infinite, thick isotropic cylindrical shell subjected to internal pressure
loading is analyzed using variable-order cylindrical solid elements. This problem is taken
from the verification manual™ of commercial FE package I-DEAS.™ The plane-stress
Strength of Materials (S.0.M.) solution to this problem is also obtained from the
equations given in the text by Srinath.”! Due to the symmetry of geometricaland material
properties and applied loading only 1/4™ configuration of the cylindrical shell is modeled
in the present analysis as shown in Fig. 3.21. The appropriate symmetric kinematic
boundary conditions are imposed in the x- and 6-directions. The geometrical parameters
of the 1/4™ configuration of the thick cylindrical shellare 7;=0.1m, 7,=0.2 m,a= 1.0 m
and © =7/ 2 radians. The material properties of the cylinder are taken as E = 200 MPa
and v = 0.3. The cylindrical panel is subjected to a uniform pressure load of 60 MPa (=
q0) on the inner- surface. Thus, the variable-order cylindrical solid element representing
the inner most surface of the cylindrical shell is subjected to an applied surface traction
given by

52 (%,8) =40 | (55)

Thus, in Eq. (15) the only nonzero external force is sty (x,0) applied at z = zu =0 on the
surface Sy, and for this numerical example Eq. (15) for the variable-order cylindrical
solid element representing the innermost surface of the cylindrical shell reduces to

a®
éﬂ} -Ou;dS = {){)qOSW(x,O,O)Rdde (56)
i
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Further, in Eq. (32) the force vectors BY = EE = ( for all the elements, and only the force

vector E;‘;‘ for the variable-order cylindrical solid element representing the innermost
surface of the cylindrical shell will contain non-zero terms computed from Eq. (56) above.

The numerical results for this example are obtained using three different computational
models. The first model uses only one variable-order cylindrical solid element to
represent the structure shown in Fig. 3.21; the second model uses two identical variable-
order cylindrical solid elements through the thickness (1x1x2 mesh); and the third model
uses eight variable-order cylindrical solid elements through the thickness (1x1x8 mesh
with non-uniform z-refinement). The numerical results obtained from the analysis
performed using the first computational model with the order of the variable-order
cylindrical solid element systematically increased from M = 2 to M = 8 are presented in
Table 3.4. Further, the numerical results obtained from the analyses performed using (i)
the second model with the order of the variable-order cylindrical solid element increased
systematically from M = 2 to M = 5, and (ii) the third model with the order of the
variable-order cylindrical solid element taken as M = 2 are presented in Table 3.5. For
comparison the results given in the verification manual” of commercial FE package I-
DEAS™ and the plane-stress S.0.M. solution’* are also provided in Tables 3.4 and 3.5.
In Tables 3.4 and 3.5 the stresses are normalized by the applied pressure load (¢0) and
the displacements are normalized by the shell thickness (2 = r;- r2). As shown in Table
3.4, the numerical results indicate an improvement in the accuracy of the solution as the
order of the variable-order cylindrical solid element is increased from M =2to M = 8. .
However, beyond a certain optimum level of the order of variable-order elements (e.g.,
M = 6 for this problem) there is not much significant improvement in the accuracy of the
solution. Instead, as indicated by the numerical results presented in Table 3.5, it is
advantageous to increase the number of variable-order- cylindrical solid elements in the
analysis while keeping the order M of variable-order elements the same. For example,
compare the solutions obtained for M = 2 and M = 4 fiom the first and second models,
respectively (see Tables 3.4 and 3.5). The numerical results obtained from the third model
seem to provide the converged solution with the least number of d.o.f. in the analysis (see
Table 3.5). However, the non-uniform refinement of the mesh in the z-direction that
provided the converged solution, was achieved after a number of trial and errors. Thus,
sometimes it is computationally efficient (in terms of time) to simply increase the order
M of the variable-order elements using a uniform mesh design. From the numerical results
presented in Tables 3.4 and 3.5 it can be observed that, as compared to I-DEAS’, the
present analysis provides a highly accurate solution with much lower degrees of freedom
in the model. The infinite, thick isotropic cylindrical shell described above was also
analyzed subjected to external pressure using variable-order cylindrical solid elements.
The third model
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Table 3.4. Comparison between the results obtained from (a) the present 3-D analysis
performed using a single variable-order cylindrical solid element, (b) the analysis
performed using I-DEAS”, and (c) the Strength of Materials (S.0.M. ) plane-stress
solution given in the text by Srinath”’ for an infinite length, thick isotropic cylindrical shell
subjected to internal pressure loading (see Fig. 3.21).

QUANTITY M=2 M=4 M=6 M=8 I-DEAS™ S.0M
Solution”!
G, (r =0.1m) -0.590 -0.974 -0.999 -1.001 -0.967 -1.0
Goo (r = 0.1m) 1.802 1.655 1.644 1.644 1.633 1.667
w(r = 0.1m) 58¢-4 58e-4 584 5.8¢-4 5.8e-4 5.9¢e-4"
Tmax(r=01m)  1.196 1315 1322 1323 1.3 1.333
G, (r =02m) 0.170  0.007 0.003  0.002 0.0 0.0
Goo (r = 0.2m) 0.725 0.659 0.655  0.655 0.667 0.667
wi(r = 0.2m) 3.9e-4 39e-4 39e-4 3.9e-4 4.0e-4 4.0e-4
Tmax(r=02m) 0278 0326 0326 0.327 0.333 0.333
D.OF 54 300 882 1944  1953-5733 -

Table 3.5. Comparison between the results obtained from (a) the present 3-D analysis
performed using one variable-order cylindrical solid element each in the x- and 6-
directions and two or more variable-order cylindrical solid element in the z-direction, and
(b) the Strength of Materials (S.0.M.) plane stress solution given in the text by Srinath’!
Jor an infinite length, thick isotropic cylindrical shell subjected to internal pressure loading

(see Fig. 3.21).

QUANTITY M=2 M=3 M=4 M=5 M=2 S.0.M
(Ix1x2) (1x1x2) (I1x1x2) (1x1x2) (1x1x8)  Solution”

G,,(r = 0.1m) -0.838  -0974  -0.996 -1.0 -1.0 -1.0
Gao (7 = 0.1m) 1.734  1.678 1.668 1.667 1.667 1.667
w(r = 01m) 59e-4 59e-4 59e-4 59e-4  59e-4 5.9e-4
Tmax (7 = 0.1m) 1286  1.326 1.332 1.333 1.333 1.333
G,,(r = 02m) 0.027  0.003 0.0 0.0 0.0 0.0
Sgo (7 = 0.2m) 0.678  0.665 0.667 0.667 0.667 0.667
w(r = 0.2m) 4.0e-4  4.0e-4 4.0e-4 4.0e-4  4.0e-4 4.0e-4
Tmax(r=02m) 0326  0.331 0.333 0.333 0.333 0.333
D.O.F 90 252 540 990 306 -
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(1x1x8, M = 2, d.o.f = 306) was used for the purpose of this analysis. The same high
accuracy of the numerical results was achieved in this study as well. Further, using the
present analysis the numerical results for the plane-strain S. O. M. solution”' were also
duplicated with high accuracy by solving the problem of thick isotropic cylindrical shell
under axial restraints, subjected to internal and/or external pressure loads.

3.2.3.3 Uniaxial extension of a laminated cylindrical panel

Fig. 3.22 A [0/90]; laminated cylindrical panel subjected to uniform axial
extension.

Next a [0/90]y laminated cylindrical panel subjected to uniform axial extension is analyzed
using the variable-order cylindrical solid elements. A 1x20x12 mesh with M = 3 (d.o.f =
22,422) is used to model and analyze the 1/4™ configuration of the cylindrical panel (/R =
0.4, a/h=4 and © = 0.4 radians; refer to Fig. 3.22 for notations). The three-dimensional .
material properties of the lamina are given by Eq. (50).

The distributions of the non-zero stresses as obtained from the present analysis at x/a =
0.5 at the 0/90 interface in the 0° and 90° layers are shown in Figs. 3.23-3.26. All the
stress components are normalized by the applied axial strain. As shown in Fig. 3.23 the
distributions of the normal stress Gy, in the 0° and 90° layers are uniform along the 6-

direction. The distributions of the other in-plane normal stress component Ggg in the 0°

and 90° layers along the 8-direction are shown in Fig. 3.24. The normal stress component
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0gp should attain a zero value at the free edge so as to satisfy the traction-free static

boundary condition at the edge 68/ ® = 1. However, as is the case with most of the
discrete numerical analyses, the solution from the present analysis also fails to exactly
satisfy this static boundary condition at the free edge at material interface. However, in
the present analysis this traction-free edge static boundary condition is satisfied with high
accuracy as one moves away from the interface region. As shown in Figs. 3.25 and 3.26
the distributions of the interlaminar stresses at the 0/90 interface depict the excellent
continuity of transverse normal stress G, and transverse shear stress 1g,, respectively,

achieved in the present analysis. The free-edge (or boundary layer) effects are equally
significant in the laminated cylindrical panels as well. The distributions of the normalized
displacements v and w along the 6-direction are shown in Fig. 3.27. As shown in Fig. 3.28

the transverse normal displacement w undergoes change in sign as well as magnitude as
one moves from the mid plane (8/© = 0) towards the free edge (6/© =1).

250
20.0 - ..............................
5 450 [
‘E; X 90° ply
3 i
&,: 10.0 N 0° ply
b™ [
50 F
0.0 i PR W TN IS ST O T PR YT S B P R S R N S
0 0.2 04° 06 0.8 1
0/®

Fig. 3.23 Distributions of normal stress Gy, at the 0/90 interface of a [0/90};
laminated cylindrical panel subjected to uniform axial extension.
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Fig. 3.24. Distributions of normal stress Ggg at the 0/90 interface of a [0/90]r
laminated cylindrical panel subjected to uniform axial extension.
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Fig. 3.25 Distributions of transverse normal stress G, at the 0/90 interface of a
[0/90] laminated cylindrical panel subjected to uniform axial extension.
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Fig. 3.26 Distributions of transverse shear stress Tg, at the 0/90 interface of a
[0/90]t laminated cylindrical panel subjected to uniform axial extension.
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Fig. 3.27 Distributions of transverse displacements at the 0/90 interface of a [0/90]1
laminated cylindrical panel subjected to uniform axial extension.
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Fig. 3.28 Distributions of transverse normal stress G, inside the 90° layer (z/h =
0.4) of a [0/90]; laminated cylindrical panel subjected to uniform axial extension.

The distribution of the transverse normal stress G, inside the 90° layer (z/h = 0.4; see

Fig. 3.22) is shown in Fig. 3.28. As shown in Fig. 3.28 this stress component reaches a
normalized peak value of about 0.375 Msi at the free edge 6/© = 1. Further, the
magnitudes of transverse normal stress G,, and transverse shear stress Tg, obtained

from the present analysis are found to be numerically very small (zero) in the 90° layer at
the bottom surface (z/h = 0) of the [0/90]r laminate, thus, satisfying the traction-free
static boundary conditions at that surface. Once again the results presented here show
that in a displacement-based analysis using the variable-order cylindrical solid elements,
the continuity of stresses at the interface of the elements of the same material or even of
the different materials is achieved with a very high accuracy without enforcing it a priori.

The numerical examples presented so far demonstrate the high accuracy of the solution

achieved by variable-order rectangular and cylindrical solid elements. Based on the

results presented in this work for the displacement-based analyses using variable-order

rectangular and cylindrical solid elements, the following conclusions are drawn:

(i) The continuity of stresses at the interface(s) of the elements of the same material or of
different materials is achieved with a very high accuracy without enforcing it a priori.

(ii) The static boundary conditions at the external surfaces are satisfied with a very high
accuracy. '

(iii) In most cases the analysis using variable-order elements requires less degrees of
freedom to solve the problem and achieve same or even higher accuracy of the
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solution.

(iv) There is always an optimum level of order M of the variable-order elements beyond
which there is not much significant improvement in the accuracy of the solution.
Thus, it is preferable to achieve an optimum combination of the order M and the
number of variable-order elements to analyze a given structural problem.

The extension of computational algorithm to include the singular 3-D variable-order solid
elements (rectangular and cylindrical) for application in the linear fracture mechanics
problems, and the variable-order wedge element for analyzing more general
configurations is currently in progress. Furthermore, variable-order rectangular and
cylindrical solid transition elements are also developed which can be effectively utilized to
assemble two variable-order elements of different order, say M = 2 and M = 4. This will
not only make the analysis of complex structural problems elegant by providing the user
the flexibility of refining the order of the variable-order elements in the region of high
stress gradients (or the region of their interest) but also make the SAVE computer
program computationally efficient. It is envisaged that the variable-order elements will
find its most glamorous application in the analysis of advanced composite material
structures having material and geometrical discontinuities where the higher-order

displacement approximations would be able to represent the structural response more
accurately.
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4.0 ANALYSIS OF DOUBLE-LAP BONDED JOINTS
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Figure 4.1 A double-lap adhesively bonded joint configuration.

A typical double-lap bonded joint configuration shown in Fig. 4.1 is analyzed using a
quasi-2D closed-form solution BONJO,* a finite element based commercial software
ABAQUS™ and a generalized coordinate finite element computer program SAVE
developed in-house (see Section 3 for details). Metallic and composite adherends were
considered during these analyses. Section 4.1 provides a comparison between the results
obtained from BONJO and 2-D/3-D analyses using the commercial FE software
ABAQUS™ for a double-lap adhesively bonded joint having graphite/epoxy and titanium
adherends. Angle-ply effects are also discussed therein. Section 4.2 gives the details of the
3-D thermomechanical analysis performed using the generalized coordinate finite element
computer program SAVE for a perfectly bonded double-lap joint having four different
composite upper adherends and aluminum lower adherends. In this section the effects of
restrained curing are also discussed. The effects of change in the design parameters such as
bond length, bond thickness and adhesive curing temperature on the failure loads of a
double-lap adhesively bonded joint are studied through a combined analytical and
experimental work in Section 4.3.

4.1 ANALYSIS OF ADHESIVELY BONDED DOUBLE-LAP JOINTS:
COMPARISON BETWEEN BONJO AND FEM ANALYSES

In this section, a plane stress solution to the adhesively double lap joint configuration (see
Fig. 4.1) under uniaxial load is obtained from BONJO* computer code and compared
with 2-D/3-D FE analysis solution obtained using commercial package ABAQUS.” The
2-D plane stress analysis using a 4-node bilinear plane stress element (CPS4), and 3-D
finite element analyses using ABAQUS 8-node solid element (C3D8) and ABAQUS 27-
node (C3D27), respectively, are performed for the same joint configuration. Due to the
symmetry of the joint with respect to x-, y- and z-directions, only 1/8" of the joint
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configuration as shown in Fig. 4.2 is analyzed by the 3-D finite element analysis. Three
different mesh configurations are used to model double-lap joint for the 2-D stress
analysis as is shown in Fig. 4.3. The coarsest mesh is labeled Mesh-1, and has 1,042
elements and 2,282 degrees of freedom. The intermediate mesh, denoted as Mesh 2, has
1,839 elements and 3,970 d.o.f.. The finest mesh, called Mesh 3, has 3,286 elements and
6,912 degrees of freedom. Two different mesh configurations are used to model double-
lap joint for the 3-D stress analysis as shown in Fig. 4.4. The meshes shown in Fig. 4.4
represent part of the detailed meshes for the symmetric quarter section of the double-lap
jointconfiguration
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A : Represents symmetry condition for the edge.

Fig. 4.2 1/8™ configuration of the double-lap adhesively bonded joint.

analyzed in Fig. 4.2. The 3-D finite element model has 3,304 elements and 13,830 degrees
of freedom for the 8-node element mesh and 1,360 elements and 39,447 degrees of
freedom for the 27-node element mesh. The BONJO series codes analyze only the
overlapped portion of joint, i.e., the configuration comprising of only the portions of the
adherends which are bonded to the either side of the adhesive layer. This is illustrated in
Fig. 4.5 for an adhesively bonded double-lap joint.

The upper adherend is a seven -ply [0/45/-45/0/-45/45/0}; graphite/epoxy 5206
composite laminate, the lower adherend is a 7075-T6 Titanium splice plate, and the
adhesive layer is AF-126-2. The joint dimensions are given based on the 1/8" geometry of
the joint (see Figs. 4.1 and 4.2. The ply thickness in upper adherend is 0.007 inches (i.e.,
h, = 0.049 in.). The thickness of the titanium plate is h; = 0.25 inches, and the thickness
of adhesive layer is h; = 0.01 inches. The joint dimensions are: a = 5.5 in., a; = 1.25 in.,
and a; = 0.5 in.. The width of the adherends ‘2b’ is 1.5 inches. A uniform tensile stress
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Double Lap Joint Geometry
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Figure 4.5 Double-lap bonded joint configuration analyzed by BONJO code.

‘o of 2000 psi is applied at the ends of the Titanium plate. The material properties
for the adherends and the adhesive are given in Table 42,
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Table 4.1 Material properties for the adherends and adhesive.

UpperAdherend  Lower Adherend Adhesive
El .22e+8 PSI .103e+8 PSI 455e+6 PSI
E2 .19e+7 PSI .103e+8 PSI 455e+6 PSI
E3 .19¢+7 PSI .103e+8 PSI 455e+6 PSI
Gl12 .72e+6 PSI .390e+7 PSI .175e+6 PSI
G13 .72e+6 PSI .390e+7 PSI .175e+6 PSI
G23 .57e+6 PSI .390e+7 PSI .175e+6 PSI
v12 .33 33 3
v13 33 33 3
v23 33 33 3

The distributions of axial stress o, normal stress G, and transverse shear stress T, in the
upper and lower adherends, and adhesive are obtained from the closed form analysis
BONIJO and FE analysis ABAQUS. Only the results obtained from ABAQUS using 27-
node brick element are plotted versus BONJO results for clarity of graphs. The results
obtained from 2-D FE analysis using finest mesh (Mesh 3, see Fig 4.3), and 3-D analysis
using 8-node and 27-node brick element were found to compare well with each other.

The distributions of the stress components along the bondline (i.e., along 0 < x; < a;; see
Fig. 4.5 or alonga, < x < a;+ a; see Fig. 4.2) are plotted and compared from the closed
form solution BONJO and 3-D FE analysis at various locations in the joint. All the stress
components are normalized by the applied stress 0. It may be noted here that in the FE
model the locations x; = a; in the upper adherend and x; = 0 in the lower adherend are not
the free edges (refer to Fig. 4.5). However, in the BONJO solution approach, the
locations x; = a; in the upper adherend and x; = 0 in the lower adherend are modeled as
free edges where the shear force, and hence, the transverse shear stress component T,, are
ZEero.

4.1.1 Stresses at the center line of the adhesive layer

The distributions of adhesive shear stress 1,, and normal stress 6, at the centerline of the .
adhesive as obtained from various analyses are shown in Fig. 4.6 and 4.7, respectively. It
can be seen from Fig. 4.6 that the magnitudes of adhesive shear stress T,, predicted by
the two approaches compare very well in the regions slightly away from the edges x,/a; =
0 and x;/a; = 1. As shown in Fig. 4.6, the adhesive shear stress 1,, from the closed from
solution BONJO attains a zero value at the x;/a; = 0 and x;/a; = 1 thereby satisfying the
traction free boundary conditions at these edges. As is expected, the FE solution does not
exactly satisfies the traction free edge conditions at x;/a; = 0 and x;/a; = 1. In finite
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element analysis the value of adhesive shear stress Ty, has been found to approach zero
with the refinement in the FE mesh. However, it is questionable if shear stress Ty, would
converge to zero with further mesh refinement. As shown in Fig. 4.7, the values of
adhesive normal stress o, predicted by different models along the bond line compare very
well in the regions slightly away from the free edges x;/a; = 0 and x,/a; = 1. At the edges
x;/a; = 0 and x,/a; = 1, the values of adhesive normal stress &, predicted by closed form
solution BONJO are lower in magnitude than those predicted by the FE analysis.
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Fig. 4.6 Distributions of shear stress 1,, in the adhesive layer.
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Fig.4.7 Distributions of normal stress G, in the adhesive layer.

4.1.2 Stresses at the interface between adhesive layer and 0° ply of the upper
adherend

The distributions of axial stress G, normal stresses G, and shear stress 1T, in the 0° ply
of the upper adherend at the adhesive/upper adherend interface along the bondline are
shown in Figs. 4.8, 4.9 and 4.10, respectively. The values of these stress components as
predicted by the different models compare very well in the regions slightly away from the
edges x;/a; = 0 and x;/a; = 1. As shown in Fig. 4.8, the value of ply axial stress o,
predicted by the closed form solution BONJO at the edge x,/a; = 1 is higher in magnitude
than those predicted by the FE analysis. At the edges x;/a; = 0 and x,/a; = 1, the values of
ply normal stress ©, predicted by the closed form solution BONJO are lower in
magnitude than those predicted by the FE solution (see Fig. 4.9). The shear stress
component T,, obtained from the closed from solution BONJO attains a zero value at
x;/a; = 0 and x;/a; = 1 thereby satisfying the traction free boundary conditions at these
edges, as shown in Fig. 4.10. Note that in BONJOIG solution x;/a; = 1 is modeled as a
freeedge.

4.1.3 Stresses at the interface of 0° ply and 45° ply in the upper adherend
The distributions of axial stress O, normal stresses 6,, and shear stress T,, in the 0° ply

of the upper adherend at the interface of 0° ply and 45° ply along the bondline are shown
in Figs. 4.11, 4.12 and 4.13, respectively. The values of these stress components as
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predicted by the different models compare very well in the regions slightly away from the
edgesx;/a;= 0 and x,/a; = 1. As shown in Fig. 4.11, the value of ply axial stress Oy
predicted by closed form solution BONJO at the edge x;/a; = 1 is higher in magnitude
than those predicted by the FE model. At the edgesx,/a; = 0 and x,/a; = 1, the values of
ply normal stress ©, predicted by the closed form solution BONJO are higher in
magnitude than those predicted by the FEM solution -(see Fig. 4.12). The shear stress
component Ty, obtained from the closed form solution BONJO attains a zero value at the
x;/a; = 0 x;/a; = 1 thereby satisfying the traction free boundary conditions at these edges,
as shown in Fig. 4.13. In the finite element analysis the value of the shear stress
component T,, tends towards zero at the x;/a; = 0 edge. The edge x,/a; = 1 is not a free
edge in FEM analysis.
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Fig. 4.8 Distributions of normal stress o, in the 0° ply of the upper adherend at the
adhesive layer-upper adherend interface.
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Fig. 4.9 Distributions of normal stress o, in the 0° ply of the upper adherend at the
adhesive layer-upper adherend interface.
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Fig. 4.10 Distributions of shear stress T,, in the 0° ply of the upper adherend at the
adhesive layer-upper adherend interface.
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Fig. 4.11 Distributions of normal stress oy in the 0° ply at the 0°/45° interface of the

upper adherend.
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Fig. 4.12 Distributions of normal stress G, in the 0° ply at the 0°/45° interface of the
upper adherend.
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Fig. 4.13 Distributions of shear stress T,, in the 0° ply at the 0°45° interface of the
upper adherend.

4.1.4. Stresses at the interface of -45° ply and 0° ply of the upper adherend

The distributions of axial stress Gy, normal stresses G,, and shear stress 1,, in the -45°
ply of the upper adherend at the interface of -45° ply and 0° ply along the bondline are
shown in Figs. 4.14, 4.15, and 4.16, respectively. The values of the normal stresses o,
and shear stress Ty, in the -45° ply as predicted by the different models compare very
well in the regions slightly away from the edges x;/a; = 0 and x;/a; = 1. As shown in Fig.
4.14, the values of axial stress component G, predicted by the closed form solution
BONJO and the FEM analysis do not agree well. At the free edge x;/a; = 0 the values of
ply normal stress o, predicted by the closed form solution BONJO are lower in
magnitude than those predicted by the FE model (see Fig. 4.15). However, the reverse is
true at the x,/a; = 1 edge. The shear stress component 1T,, in -45° ply as obtained from the
closed form solution BONJO attains a zero value at the x,/a; = 0 and x;/a; = 1 thereby
satisfying the traction free boundary conditions at these edges, as shown in Fig. 4.16.
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Fig. 4.14 Distributions of normal stress o, in the -45° ply at the -45”0° interface of

the upper adherend.

Illlllllllllllllll!ll

0 0.2 0.4 0.6 0.8 1 1.2

x1la1

Fig. 4.15 Distributions of normal stress c; in the -45° ply at the -45”0° interface of

the upper adherend.
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Fig. 4.16 Distributions of shear stress T,, in the -45° ply at the -45°0° interface of
the upper adherend.

4.1.5 Stresses at the tdp surface of the upper adherend (in 0° ply)

The distributions of axial stress oy, normal stresses G,, and shear stress Ty, in the 0° ply
of the upper adherend at the top surface along the bondline are shown in Figs. 4.17, 4.18
and 4.19, respectively. As shown in Fig. 4.17, the values of ply axialstress G, predicted
by closed form solution BONJO at the edgex = 1.25 is higher in magnitude than those
predicted by the different FE models. The normal strésses ¢, and the shear stress
component Ty, in 0° ply obtained from the closed form solution BONJO attains a zero
value along the bondline thereby satisfying the traction free boundary conditions at the
top surface, as shown in Figs. 4.18 and 4.19, respectively. In the finite element analysis
the values of normal stresses ©, and shear stress component T,, at the top are
numerically small as well. '
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Fig. 4.17 Distributions of normal stress o in 0° ply of the upper adherend at the top

surface.
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Fig. 4.18 Distributions of normal stress , in 0° ply of the upper adherend at the top

surface.
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Fig. 4.19 Distributions of shear stress T,, in 0° ply of the upper adherend at the top
surface.

4.1.6 Stresses at the interface between adhesive layer and lower adherend

The distributions of axial stress Oy, normal stresses ©,, and shear stress T,, in the
Titanium plate at the interface of adhesive/lower adherend along the bondline are shown
in Figs. 4.20, 4.21, and 4.22, respectively. The values of these stress components as
predicted by the different models compare very well in the regions slightly away from the
edges x;/a; = 0 and x,/a; = 1. As shown in Fig. 4.20, the value of axialstress o, predicted
by closed form solution BONJO at the edge x;/a; = 0 is lower in magnitude than those
predicted by the FE model. At the edges x;/a; = 0 and x,/a; = 1, the values of normal
stress 0, predicted by the closed form solution BONJO are lower in magnitude than
those predicted by the different FE models (see Fig. 4.21). The shear stress component
Ty, obtained from the closed form solution BONJO attains a zero value at the x,/a; = 0
and x;/a, = 1 thereby satisfying the traction free boundary conditions at these edges, as
shown in Fig. 4.22. Once again it is emphasized that in BONJO solution x;/a; = 0 edgeis .
modeled as a free edge, while in the FE model the location x,/a; = 0 in the lower adherend
is not a free edge. ‘
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Fig. 4.20 Distributions of normal stress oy in the lower adherend at the adhesive

layer-lower adherend interface.
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Fig. 4.21 Distributions of normal stress G, in the lower adherend at the adhesive

layer-lower adherend interface.
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Fig. 4.22 Distributions of shear stress T,, in the lower adherend at the adhesive
layer-lower adherend interface.

4.1.7 Stresses at the midplane of the joint (or midplane of lower adherend)

The distributions of axial stress G, normal stresses G,, and shear stress 1y, in the
Titanium plate at the midplane of the lower adherend (or joint) along the bondline are
shown in Figs. 4.23, 4.24, and 4.25, respectively. The values of these stress components
as predicted by the different models compare very well in the regions slightly away from
the edges x;/a; = 0 and x,/a; = 1. As shown in Fig. 4.23, the value of axial stress G,
predicted by closed form solution BONJO at the free edge x;/a; = 0 is slightly higher in
magnitude than those predicted by the FE analysis. At the edgesx;/a; =0 and x,/a; = 1,
the values of normal stress ¢, predicted by the closed form solution BONJO are much
higher in magnitude than those predicted by the FE model (see Fig. 4.24). The shear
stress component Ty, attains numerically small values along the bondline at the midplane
of the joint as obtained from the two solution approaches thereby satisfying the .
symmetry conditions at the mid surface of the joint, as shown in Fig. 4.25.

The highlights of the comparison study between BONJO and FE analyses are
summarized below:

1. The distributions of axial stress o normal stress G,, and transverse shear stress T, in
the upper and lower adherends, and the distributions of normal stress ©,, and transverse
shear stress 1y, in the adhesive layer are obtained from the closed form analysis BONJO

76




and 3-D FE analysis ABAQUS. The numerical values of these stress components as
predicted by the two analyses compare very well in the bond regions slightly away from
the edges.
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Fig. 4.24 Distributions of normal stress o, at the midplane of the lower adherend.
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Fig. 4.25 Distributions of shear stress T,, at the midplane of the lower adherend.

2. The shear-stress component 1,, obtained from the closed form solution BONJO attains
a zero value at the x,/a; = 0 and x,/a; =1 edges of the joint thereby satisfying the traction-
free boundary conditions at these edges. In the finite element analysis the value of the
shear stress component 7y, numerically approach zero at the x;/a; = 0 or x;/a; = 1 edge
(depending upon whether it is an upper adherend or a lower adherend) with the
refinement in the FE mesh.

3. At the edgesx;/a; = 0 and x,/a; = 1, the values of normal stress G, predicted by the
closed form solution BONJO do not agree well with those predicted by the FE model. A
possible explanation of this could be the fact that the normal stress component G, is
exhibiting a singular behavior at these edges thereby attaining different numerical values in
the two solution approaches. .

4. At the edgex;/a; = 0, the numerical values of axial normal stress o, predicted by the
closed form solution BONJO have only slight differences with those predicted by the
different FE models. An exception to this is the axial stress component o, in 45° plies of

the upper adherend where the closed form solution results do not agree well with those
obtained from the FE analysis all along the bondline.

4.1.8 Angle ply effects

In this section a detailed comparison of the distributions of stresses as obtained from the
BONJO and FE analyses is performed by varying the orientation of the angle-plies in the
upper adherend of the double-lap joint. In particular, the distribution of axial normal
stress component Oy in angle-plies is subjected to a closed scrutiny. In the absence of any

78




bench mark solution to the double-lap joint problem being analyzed, a systematic
comparison is made between closed form solution BONJO* and finite element solution
using commercial package ABAQUS*. During this investigation some interesting results
were obtained which are discussed in the following paragraphs.

As first step the complexity of the analysis due to the presence of angle plies was
avoided by replacing +45° plies by 0° plies in the stacking sequence of the upper
adherend. Thus, the double lap configuration of Fig. 4.2 (or Fig. 4.5) was analyzed with a
seven-ply unidirectional graphite/epoxy 5206 upper adherend. All the other joint details
were left unchanged. The distributions of axial stress G, normal stress ©,, and transverse
shear stress T, in the upper and lower adherends were obtained from the closed form -
analysis BONJO and 3-D FE analyses. The distributions of normal stress ¢, and
transverse shear stress Ty, in the adhesive layer were also obtained as a result of these
analyses. The distributions of all the stress components at various locations as obtained
from the two solution approaches were found to compare well with each other. The
distributions of stresses 6, and T, in the adhesive layer, normal stress O, at the midplane
of the joint in lower adherend, and at the midplane of the upper adherend are shown in
Figs. 4.26, 4.27 4.28 and 4.29, respectively, to support this claim. In general,it is found
that the points 1 through 3 summarized at the end of the sub-section 4.1.7 are valid for
this numerical example also. Notice that the distributions of normal stress component C
shown in Fig. 4.29 at the interface (in mathematical sense) of the two 0° layers compare
very well from the two analyses.
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Fig. 4.26 Distributions of normal stress G, in the adhesive layer.
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Fig. 4.27 Distributions of shear stress T,, in the adhesive layer.
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Fig. 4.28 Distributions of normal stress G, at the midplane of the lower adherend.
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Fig. 4.29 Distributions of normal stress 6, at the midplane of the upper adherend.

Next, the +45° plies were replaced by 90° plies in the stacking sequence of the upper
adherend. The double lap configuration of Fig. 4.2 was now analyzed with a seven-ply
[0/90/90/0/90/90/0]r graphite/epoxy 5206 composite laminate as the upper adherend. All
the other joint details remained the same. In general, the observations made during the
analysis of the numerical example of the first step are found to be valid for this numerical
example as well. The distributions of all the stress components at various locations as
obtained from the two solution approaches were found to compare well with each other.
The distributions of stresses 6, and 7T, in the adhesive layer, normal stress Gy at the
midplane of the joint in lower adherend, and at the interface of 0°/90° plies of the upper
adherend in 0° and 90° plies are shown in Figs. 4.30, 4.31, 4.32, 4.33, and 4.34
respectively, to support this claim. It may be noted that the distributions of normal stress
component 6, shown in Fig. 4.34 in the 90° at the interface of the 0°/90° layers compare
very well from the two analyses.
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Fig. 4.30 Distributions of normal stress c; in the adhesive layer.

0.5

0.4

03

0.2

cencscadpansacP’

0.1

@ommomcoce

[T B AU B SN T SN ST U W BN N A B AN

0 02 04 06 08 1 1.2

x/a
1'%

Fig. 4.31 Distributions of shear stress 1,, in the adhesive layer.
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Fig. 4.32 Distributions of normal stress o at the midplane of the lower adherend.
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Fig. 4.33 Distributions of normal stress o in the 0° ply at the 0°/90° interface of the

upper adherend.
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Fig. 4.34 Distributions of normal stress o, in the 90° ply at the 0°/90° interface of
the upper adherend.

The numerical examples studied so far have shown that for unidirectional and cross-ply
laminates the BONJO codes and FEM results compare very well in the regions slightly
away from the joint corners. However, the distributions of axial stress component o, in
45° plies do not agree well from the BONJO and FEM analyses. A detailed study of the
solution approach® employed by BONJO codes revealed that the stretching-shearing
coupling effects introduced by the presence of angle-plies have been neglected during the
analysis in the stress-strain law for the axial stress component o, for the lamina. (See
equation (58) of Ref.[49] which has been derived based on combined assumption of plane
stress and plane strain thereby neglecting the shear strain term €y ) This assumption does
not seem to effect the overall solution in the present example of double lap bonded joint
where the stress distributions in the adhesive, lower adherends and 0° plies of upper
adherends compare well from the two solutions. This can be attributed to the fact that the

upper adherend is a balanced laminate, and in laminated plate theory the terms A;q, A, .

etc., do not contribute in the expressions for stress and moment resultants for a balanced
symmetric laminate. However, the effects of these terms and shear strain should be
included for a computation of lamina stresses in the angle plies. Renton and Vinson*"*®
also made similar observations during the development of codes BOND3 and BOND4.

The aforementioned statements were verified by purposefully neglectingthe effects of
terms A, Az, etc., during the FEM analysis. This was achieved by setting the

84




compliance S¢, S6, Sz, and S5 in the strain-stress relation of the element to zero in the
ABAQUS code. The double lap bonded joint with 45° plies in the upper adherend was
analyzed. The distributions of axial stress component G, in the 45° ply at the 45°/0°
interface are shown in Fig. 4.35. Notice the effect of neglecting the stretching-shearing
coupling in the FEM analysis; now the FEM results with coupling terms set to zero
compare very well with the BONJO solution. As shown in Fig. 4.36, the distributions of
axial stress component O, in the 0° ply at the 45%0° interface obtained by setting the
coupling terms to zero in FEM analysis compare better with BONJO solution.
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Fig. 4.35 Distributions of normal stress o, in the 45° ply at the 45%/0° interface of
the upper adherend.
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Fig. 4.36 Distributions of normal stress o, in the 0° ply at the 45°/0° interface of the
upper adherend.

For the further study of the angle-ply effects in detail, the results for the double-lap joint

problem with two more stacking configurations for the upper adherend viz., seven-ply

[0/25/-25/0/-25/25/0}r and seven-ply [0/65/-65/0/-65/65/0]1 graphite/epoxy 5206

composite, were compared from the two analyses. All other problem parameters were

unchanged. The distributions of axialstress component G in the 25° ply and 0° at the

25°/0° interface for the two cases are shown in Figs. 4.37 and 4.38, respectively. As

shown in Figs. 4.37 and 4.38, the distributions of axial stress component o, in the 25°

ply and 0° ply at the 25°/0° interface obtained by setting the coupling terms to zero in

FEM analysis compare very well with the BONJO solution. The distributions of axial
stress component Gy in the 65° ply and 0° at the 65°0° interface for the two cases are

shown in Figs. 4.39 and 4.40, respectively. As shown in Fig. 4.39, the distributions of
axial stress component Oy in the 65° ply at the 65°/0° interface obtained by setting the

coupling terms to zero in FEM analysis compare very well with the BONJO solution. .
The FEM results with coupling terms set to zero for axial stress component o in the 0°

ply at the 65°/0° interface show an excellent comparison with the BONJO solution.

4.1.9 Summary

A double lap adhesively bonded joint configuration shown in Fig. 4.1 was analyzed using
closed form solution BONJO and the commercial finite element analysis package
ABAQUS™. The results obtained from this study lead to the conclusion that the
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BONJO solution approach provides reasonably accurate stress distributions in the
adhesive and adherends when the adherends are either unidirectional, cross-ply or
balanced laminates. However, in the case of balanced laminates the axial stress in the
angle plies may not be correctly predicted by the BONJO solution approach due to the
neglect of extension-shear coupling effects in the lamina constitutive law. In such cases
the BONJO solution approach should be used with caution and one’s own engineering
judgment.
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Fig. 4.37 Distributions of normal stress o in the 250 ply at the 25°/0° interface of
the upper adherend.
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Fig. 4.38 Distributions of normal stress o, in the 0° ply at the 25%/0° interface of the
upper adherend.
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Fig. 4.39 Distributions of normal stress o, in the 65° ply at the 65%/0° interface of
the upper adherend. '
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Fig. 4.40 Distributions of normal stress G, in the 0° ply at the 65°/0° interface of the
upper adherend.

4.2 THREE-DIMENSIONALANALYSIS OF PERFECTLY BONDED PLATES
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Fig. 4.41 A symmetric, perfectly bonded double-lap joint configuration

In this section the structural analysis program SAVE is utilized to model and analyze a
perfectly bonded, symmetric, double-lap joint configuration as shown in Fig. 4.41. Due to
the symmetry of the joint (see Fig. 4.41) only 1/8™ configuration of the perfectly bonded,
symmetric, double-lap joint is analyzed as shown in Fig. 4.42. The upper adherend is a
unidirectional composite laminate and the lower adherend is an aluminum plate. The
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geometric parameters used in the analysis are: a/ay=a/ay =a/b=4, a/h =20 and
a/l=alh=10,where h=h +h; /2. Four types of composite material systems used

to model the upper adherends are boron/epoxy, graphite/epoxy, glass/epoxy, and
GLARE™, The thermoelastic properties of these materials are given in Table 4.2.

Table 4.2: Thermoelastic properties of the adherends.

Aluminum  Boron/epoxy Graphite/epoxy Glass/fepoxy GLARE'™

E;;, GPa (Msi)  73.8(10.7) 2083(30.2) 164.6(23.86) 38.6(5.6)  65.6(9.51)
Ep, GPa(Msi)  73.8(10.7) 25.4(3.68)  9.83 (1.43) 8.28(12)  50.7(7.35)
Ey, GPa (Msi)  73.8(10.7) 25.4(3.68)  9.83 (1.43) 828(1.2)  50.7(7.35)
Gy, GPa (Msi)  29.5(4.28) 7.24(1.05)  6.78 (0.98) 4.14(0.6)  19.5(2.83)
Gys, GPa (Msi)  29.5(4.28) 7.24(1.05)  6.78 (0.98) 4.14(0.6)  19.5(2.83)
Gy, GPa (Msi)  29.5(4.28) 7.24(1.05)  3.66(0.53)  3.31(0.48)  19.5(2.83)
Vi 0.25 0.18 0.24 0.26 0.33

Vi3 0.25 0.18 0.24 0.26 0.33

V3 0.25 0.17 0.34 0.26 0.33

ax106/°C(°F) 23.6(13.1) 4.5(2.5) 0.02 (0.01) 8.6(4.8)  17.9(9.95)
0,x105/°C (°F) 23.6(13.1) 23.0(12.8)  22.5(12.5)  22.1(12.3) 242 (13.4)
0,x10°/°C °F) 23.6(13.1) 23.0(12.8)  22.5(125)  22.1(12.3) 242 (13.4)

There are a total of 234 variable-order rectangular solid elements in the computational
model of the analyzed configuration shown in Fig. 4.42, out of which 126 elements are
used to model the aluminum plate and 108 elements are used to model the composite
laminate. The normalized coordinates of the boundaries of the elements in the three
coordinate directions are listed below (refer to Fig. 4.42):

x/a 0.0, 0.23, 0.245, 0.25, 0.26, 0.28, 0.3, 0.4, 0.45, 0.47, 0.48, 0.485, 0.49, 0.494,
0.497, 0.498, 0.499, 0.4995, 0.5, 0.5025, 0.51, 0.52, 0.55, 0.75, 1.0;

y/b: 0.0,0.96, 1.0; and

z/h 0.0,0.4,0.45,0.5,0.55, 0.6, 1.0.

The three-dimensional displacement field in each rectangular solid element is
approximated by cubic Bernstein polynomials (M = 3). This resulted in 22,362 unknown
generalized coordinates (or d.o.f.) in the analysis. It took approximately 6100 seconds of

CPU time and 240 MW of memory to solve this problem on Cray C90 availableat the -

ASC MSRC (Aeronautical Systems Center Major Shared Resource Center) HPC (High
Performance Computing) facility at the Wright-Patterson Air Force Base, Dayton, Ohio.
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Fig. 4.42 1/8" configuration of the perfectly bonded double-lap joint modeled for
analysis.

Numerical results are presented for the two cases: (i) when the double-lap joint is allowed
to expand (or contract) freely in all the directions, and (ii) when the free expansion of the
joint in the x- and y-directions is restrained. In the first case, only the symmetry boundary
conditions #=0 at x/a=0, v =0 at y/b=0 and w=0 at z/ h=0 are imposed on

the analyzed configuration shown in Fig. 4.42. (u,v and w are the displacement
components of the element in the x-, y- and z-directions, respectively; see Appendix A.)
In the second case, the boundary conditions #=0 at x/a=1 and v=0 at y/b=1 are
also imposed in addition to the symmetry boundary conditions described above.
Furthermore, four types of composite material systems are used to model the
unidirectional composite upper adherends for the case of free-expansion analysis; while
one material system viz., boron/epoxy composite, is used to study the effects of
restrained expansion (or contraction) in the second analysis.

The variation of stresses in the lower and upper adherends along the x-direction at
y/b=0 and z/h=05 for the joint configuration shown in Fig. 4.42 subjected to a -
uniform temperature difference AT of -111.11°C (-200°F) is presented in this section. )
This kind of thermal loading can result either during the adhesive curing process or
because of the variation in the operating temperature of the aircraft. The magnitudes of
the transverse shear stress components 7., and 7y, obtained from the analyses were

found to be negligibly small, and hence are not presented here.

In the following paragraphs, first, the nature of the stress field for the case of free
(unrestrained) expansion of the joint with aluminum lower adherend and boron/epoxy
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upper adherend is discussed in detail. Then, the variation of stresses in the joint at the
interface of the aluminum lower adherend and the boron/epoxy upper adherend is
compared for the cases of unrestrained and restrained expansions. Finally, the stress
distributions in the upper adherend for four different composite materials are discussed
for the case of the unrestrained expansion of the joint.

4.2.1 Variation of stresses at the aluminum-boron/epoxy interface

The variation of stresses at the interface of the aluminum-boron/epoxy interface are
shown in Figs. 4.43-4.45. As shown in Fig. 4.43, cooling of the joint by -111.11°C
induces a tensile axial stress in the aluminum plate and a compressive axialstress in the -
boron/epoxy laminate in the overlap (or bond) region (0.25< x/ a < 05) of the joint. The
coefficient of thermal expansion of the aluminum in the x-direction is about five times
higher, and its Young’s modulus is about three times lower than that of the boron/epoxy
(see Table 4.2). Thus, more compliant aluminum plate would tend to undergo much higher
deformation in the axial direction as compared to the boron/epoxy laminate. In the present
case of negative temperature difference, the aluminum plate would tend to shrink more
than the boron/epoxy laminate in the x-direction. However, the stiffer boron/epoxy
laminate would offer resistance to this high shrinking of the aluminum plate. Since the
deformation of the two adherends have to be compatible in the interface region, the
aluminum plate would have to expand and the boron/epoxy laminate would have to
contract thereby inducing tensile axial stress in the aluminum plate and a compressive
axialstress in the boron/epoxy laminate as shown in Fig. 4.43. The axial stress 0, is
tensile in nature at the joint corner A and compressive at joint corner B. Further, the
magnitude of the axial stress component 0,, in the aluminum plate away from the bond

region is small as shown in Fig. 4.43.

The distribution of transverse normal stress component ©,, in the aluminum and

boron/epoxy adherends is shown in Fig. 4.44. As shown in Fig. 4.44 the magnitude of the
transverse stress component ©,, is negligibly small in the aluminum and boron/epoxy

adherends in the overlap region. Further, the transverse normal stress ©,, is tensile in

nature at the joint corner A and compressive at joint corner B. Thus, the joint corner A is
more susceptible to debonding as compared to the joint corner B. The transverse normal
stress component 0, attains numerically zero value in the aluminum plate at the joint

corner B and in the boron/epoxy laminate at the joint corner A thereby satisfying the .
stress-free boundary conditions at these edges.

The distribution of transverse shear stress component 7,, in the aluminum and

boron/epoxy adherends is shown in Fig. 4.45 and is kind of anti-symmetric in nature. As
shown in Fig. 4.45 the magnitude of the transverse shear stress component T,, is

comparable to the magnitude of axial stress component ©,, in the aluminum and
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boron/epoxy adherends in the overlap region. Further, the transverse shear stress
component 7,, attains numerically zero value in the aluminum plate at the joint corner B

and in the boron/epoxy laminate at the joint corner A thereby satisfying the stress-free
boundary conditions at these edges.
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Fig. 4.45 Distributions of transverse shear stress 7,, at the aluminum-
boron/epoxy interface at y/b = 0.

One may notice slight oscillations in the numerical solution of the stresses in the vicinity
of the joint corner A as compared to the joint corner B. This is due to the fact that the
computational elements are more refined in the vicinity of the joint corner B in
comparison to the joint corner A. It may also be noted that in the present analysis the
stresses are not averaged from the two adjacent elements as is done in many standard FE
packages. Instead the true values of the stress components as computed from the two
elements at their common boundary are used to create all the plots shown. Further, it
does not seem necessary to enforce the stress continuity at the boundary of the two
homogeneous elements (or elements with same material properties) because the stresses
are practically continuous along these boundaries as shown in Figs. 4.43-4.45. This is
particularly so in the vicinity of the joint corner B where more computational elements
are taken. It is further pointed out that the continuity of the transverse normal and shear
stresses along the interface of the two adherends is also achieved with a very high
accuracy as shown in Figs. 4.44 and 4.45, respectively.

4.2.2 Comparison of the stresses in the adherends for restrained versus
unrestrained cases

The distributions of stresses in the aluminum plate at the aluminum-boron/epoxy
interface for the cases of unrestrained and restrained expansion of the double-lap joint are
shown in Figs. 4.46-4.49. In general, the magnitude of the inplane stress components o,

and oy, increased manyfold after constraints on the joint against its free expansion are
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imposed (see Figs. 4.46 and 4.47). Such restraint of the metallic skin and joints commonly
occurs in the vicinity of stringers, frames and spars, etc., in primary aerospace structures.

Further, as shown in Fig. 4.48 the transverse normal stress component ©,, in the
aluminum changes sign from compression to tension at the joint corner B thereby making
the joint corner B also a critical region for debonding along with the joint corner A.
Another noticeable change occurs in the distribution of transverse shear stress component
7, which is no more anti-symmetric in nature (see Fig. 4.49). Further, the magnitude of
7., is also higherat the joint corner A for the restrained problem as compared to the

unrestrained problem. Similar observations were also made in respect of the stress field in
the boron/epoxy adherend when comparing the restrained and unrestrained situations.
However, the distributions of stresses in the boron/epoxy laminate at the aluminum-
boron/epoxy interface comparing the unrestrained and restrained expansions of the
double-lap joint are not shown here due to the lack of space. The overall effect of
restrained expansion is to enhance the severity of the stresses in the overlap region of the
double-lap bonded joint subjected to thermal loading.
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Fig. 4.46 Distributions of normal stress Gy in the aluminum adherend at the

aluminum-boron/epoxy interface at y/b = 0.
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Fig. 4.49 Distributions of transverse shear stress Ty, in the aluminum adherend at
the aluminum-boron/epoxy interface at y/b = 0.

4.2.3 Stress field in the joint for various composite material upper adherends

The distributions of axial stress ©,, and transverse shear stress 7,, in the aluminum
plate at the aluminum-composite upper adherend interface for the case of unrestrained
expansion (or contraction) of the symmetric double-lap joint for four different composite
material upper adherends are shown in Figs. 4.50 and 4.51, respectively. Similarly, the
distributions of axial stress 0,, and transverse shear stress 7,, in the composite upper
adherends at the aluminum-composite adherend interface for four different composite
material upper adherends are shown in Figs. 4.52 and 4.53, respectively. In general the
magnitudes of the stress components o,, and T,, in the aluminum plate are lower when
the upper adherends are made up of glass/epoxy or GLARE™ material as compared to
those when they are made up of boron/epoxy or graphite/epoxy material. The severity of
thermal stresses in the aluminum plate is highest in the case of graphite/epoxy and lowest
in the case of GLARE™ as the upper adherends (see Figs. 4.50 and 4.51). Similartrends
are observed for the stresses in the composite adherends where graphite/epoxy has the °
highest magnitude of thermal stresses and GLARE™ the lowest (see Figs. 4.52 and 4.53).
In fact the use of GLARE™ as upper adherend provides negligibly small magnitude of
stresses in both the adherends.
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4.2.4 Summary

A three-dimensional analysis based on variable-order solid elements (SAVE) is used to
analyze a perfectly bonded, symmetric, double-lap joint subjected to uniform temperature
loading. The joint configuration considers an aluminum adherend in combination with four
different unidirectional laminated composite adherends. When the free expansion of the
joint was permitted, the aluminum plate had much higher magnitude of the thermal
stresses for the cases when the upper adherends were either boron/epoxy or
graphite/epoxy composite laminates as compared to those cases when the upper
adherends were either glass/epoxy or the GLARE™. When the joint was restrained
against its free expansion in the inplane coordinate directions the magnitudes of the
inplane stress components o,, and 0y, in the aluminum and the boron/epoxy adherends

increased manyfold. However, the magnitude of transverse shear stress 7,, increased at

the joint corner A and decreased at the joint corner B. Further, the transverse normal
stress 0, was found to change sign from compression to tension at the joint corner B

thereby making both joint corners critical regions for initiation of debonding and
subsequent failure of the joint.
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Fig. 4.50 Distributions of normal stress o, in the aluminum adherend at the
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Fig. 4.51 Distributions of transverse shear stress Ty, in the aluminum adherend at
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Fig. 4.53 Distributions of transverse shear stress T, in the composite adherend at
the aluminum- composite interface at y/5 = 0.

4.3 THERMOMECHNICAL ANALYSIS OF ADHESIVELY BONDED DOUBLE-
LAPJOINTS: A COMBINED ANALYTICAL AND EXPERIMENTAL STUDY

In this section, the effects of changein the design parameters such as bond length, bond
thickness and adhesive curing temperature on the failure loads of a double-lap adhesively
bonded joint are studied through a combined analytical and experimental work. The design
parameters such as bond length, bond thickness and adhesive curing temperature, etc.,
affect the failure strength of adhesively bonded joints, and are important for optimum
design considerations as well.

L ] Lt
1. . Strap T
1'—1'_--:'}:'.-'-
— I o
+ e arent
\\_(A\_/AVAV VV\g\v;\u .

W LI

0.06 im> ‘_—L_H

€ 5.0 in. —p

Fig. 4.54 An adhesively bonded, symmetric double-lap joint
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The failure loads for two sets each of the bond length, bond thickness and curing
temperature were obtained experimentally for two sets of parent-strap lay-up
combination by McDonnell Douglas Aircraft Corporation for an adhesively bonded
double-lap joint tested under axial extension as shown in Fig. 4.54. The experimental
observations are corroborated with the analytical studies performed by using a closed-
form, qusai-2D analysis program BONJO* and generalized coordinate finite element
analysis program SAVE. The stress distributions in the adhesive and the parent material
as obtained from the two analyses are discussed in conjunction with the experimental
observations. A brief discussion of BONJO and SAVE analysis programs is provided in
Sub-sections 2.1.4 and 2.1.7, respectively. However, as mentioned earlier BONJO
computer code analyzes only the overlapped portion of joint, ie., the configuration -
comprising of only the portions of the adherends which are bonded to the either side of
the adhesive layer (see Fig. 4.55).

upper Adhesive

TR

lower

F—T’l

>

Detail ‘aa’
Figure 4.55 Double-lap bonded joint configuration analyzed by BONJO.

4.3.1 Experimental failure loads

A number of double-lap bonded joint specimens (see Fig. 4.54) were tested by
McDonnell Douglas Corporation. Mr. Bob Funke, McDonnell Douglas Aircraft

Corporation, St. Louis, MO 63166 provided the experimental data on double-lap bonded
joints. Various joint parameters such as bond length, bond thickness and the adhesive
curing temperatures were varied during this testing program. The average failure loads
obtained for the bonded joint specimens at two different curing temperatures are
presented in Table 4.3. Each specimen is allocated a model number. Further, the cure
temperature is combined with the model number to represent the test specimen at a
particular cure temperature. For example, Model 1-75 represents the Model 1 cured at
75°F. Thus, from here onwards the specimens will be referred to as per these notations.
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Table 4.3. Average failure loads for double-lap bonded joint specimens (Data supplied by
McDonnell Douglas Corporation, St. Louis, MO.).

Model  Beond Adhesive  Parent Parent Strap Strap Avg. Failure  Avg. Failure
Length Thickness Layup Thickness Layup Thickness Load (lb/in) Load (Ib/in)

L (in)  ty(in) t, (in) t,(in)  -65°Fdry  75°Fdry
1 0.5 0.006 C 0.1872 1 0.0936 4300 5240
2 1.5 0.006 C 0.1872 1 0.0936 5630 7848

3 1.5 0.018 C 0.1872 1 0.0936 n/a n/a

4 0.5 0.006 B 0.0624 2 0.0312 3560 522.0
5 1.5 0.006 B 0.0624 2 0.0312 4180 5430
6 1.5 0.018 B 0.0624 2 0.0312 3220 4960

The following observations are made from the experimental data provided in Table 4.2:

1. Model 2-65 with a lower curing temperature has failure load which is 28% lower than
Model 2-75.

2. Model 1-75 with smaller bond length has failure load which is about 33% lower than
Model 2-75.

3. Model 3-75 with larger bond thickness would have failure load lower than Model 2-75.
(This observation is reasonable if one compares the failure loads for Models 5-75 and 6-
75.)

Thus, it is observed that a lower curing temperature, a smaller bond length and an increase
in the bond thickness results in a lower joint failure load. -

The correlation of experimental observations outlined above with the analytical studies is
the goal here. For this purpose Model 2-75 with L = 1.5 inches, #, = 0.006 inches cured at
75°F is considered as the baseline model (see Table 4.3). The Model 1-75 with L = 0.5
inches, £, = 0.006 inches cured at 75° F represents the effect of change in the bond length
when compared with the Model 2-75. Similarly, Model 3-75 with L = 1.5 inches, 1, =
0.018 inches cured at 75° F represents the effect of change in the bond thickness when
compared to the model 2-75. Further, Model 2-65 with L = 1.5 inches, #; =0.006 inches
cured at -65°F represents the effect of change in the curing temperature as compared to
the Model 2-75.

There are two reasons for selecting Model 2 as a baseline model for the analysis instead of
Model 5. The first reason is that the effect of changes in bond length and curing
temperature on the ultimate failure loads is more pronounced for the models with parent
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lay-up C and strap lap-up 2 (Models 1, 2 and 3) as compared to the models with parent
lay-up B and strap lap-up 1 (Models 4, 5 and 6). The other reason is that the potential of
three-dimensional analysis is better realized when the adherends are thicker as in the case
of models with parent C and strap 2 (Models 1, 2 and 3) as compared to the joint models
with parent B and strap 1 (Models 4, 5 and 6).

4.3.2 Results and discussions

The four models denoted by 2-75, 2-65, 1-75 and 3-75 are analyzed using BONJO and
SAVE computer programs. A typical double-lap bonded joint configuration shown in Fig.
4.54 has been analyzed. Due to the symmetry of the joint with respect to the x-, y- and -
the z-directions, only 1/8™ of the joint configuration (see Fig. 4.2) is analyzed by the
SAVE program using a variable-order rectangular solid element with order (M = 4). Thus,
the three-dimensional displacement field in each element is approximated by fourth degree
Bernstein polynomials in all three coordinate directions. There are 19, 947 d.o.f. in the
analytical model of the double-lap joint.

The material for parent and strap is Graphite/epoxy. The adhesive material is FM300.
The parent (or lower adherend) is a 36-ply [(+45)/(0/90),/(90/0),/(+45),/(0/90),];
balanced symmetric laminate (lay-up C). The strap (or upper adherend) is a 18-ply
unidirectional composite laminate (lay-up 2). For the purpose of analysis the parent
adberend is modeled as [SL1/SL2]; where the sub-laminate SL1 = (+45), and the sub-
laminate SL2 = [(0/90),/(90/0),/(+45),/(0/90),]. The effective (or smeared) thermoelastic
properties of the sub-laminates SL1 and SL2 are obtained based on the work by Johnson
and Rastogi’. Each of these sub-laminates is then discretely modeled with the smeared
thermoelastic properties. A uniform axial displacement is applied at the face x = 5.0
inches (see Fig. 4.54). Thermal stresses due to adhesive curing are also accounted for in
the analysis. In the following paragraphs, first, the stress distributions in the baseline
Model 2-75 as obtained from the two analyses BONJO and SAVE are compared. Next,
the three-dimensional stress fields obtained from the SAVE analysis for Models 2-65, 1-
75 and 3-75 are compared with those obtained for the baseline Model 2-75.

The stress distributions for the four models described earlier are presented along the
bondline of the joint (i.e., along the x-direction) at the two locations along the thickness
coordinate (see Figs. 4.2 and 4.55). These locations are (i) the adhesive and parent
laminate interface, and (ii) the adhesive centerline. During the experimental study the
failure was observed to initiate either at the interface of the first ply of the parent
laminate and the adhesive or at the interface of the first-and second ply, at the joint edge
at B (see Fig. 4.42 for the notation of joint edge B). In case of 3-D analysis the stress
fields at the mid-plane at /b = 0.0 (refer to Fig. 4.2) are considered so as to avoid the
double-free edge or the corner effects. It may be noted that the closed-form solution
BONIJO is a quasi-2D analysis which does not model the joint corners and the free-edge
effects.
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The stress distributions for all the models are normalized by the far-field average axial
stress (denoted as G;) value in the parent laminate of the respective model. These far-field
average axial stress values are also used as input for applied loading in the BONJO
program to analyze the four models. :

4.3.2.1 Stress distributions in baseline Model 2-75

The distributions of normalized stresses along the bondline in the smeared layer SL1 at
the parent/adhesive interface and at the centerline of the adhesive (refer to Fig. 4.55 for
the coordinate system) in the baseline Model 2-75 as obtained from the BONJO and
SAVE analyses are shown in Figs. 4.56-4.61. The distribution of the normalized stress
Oy in the parent material at the parent/adhesive interface is shown in Fig. 4.56 from the
two analyses. As shown in Fig. 4.56 the values for normal stress ©,, predicted by the
BONJO analysis do not compare well with those obtained from the SAVE analysis. The
distribution of the normal stress G, in the parent material at the parent/adhesive interface

is shown in Fig. 4.57 from the SAVE analysis. The BONJO code does not account for
this stress component in the analysis.

The distributions of transverse stress components G, and 1,, from the two analyses in the
parent material layer SL1 at the adhesive/parent adherend interface are shown in Figs.
4.58 and 4.59. As shown in Figs. 4.58 and 4.59 the numerical values of these stress
components compare well with each other from the two analyses except in the vicinity of
the edge x/L = 1.0. Near the edge x/L = 1.0, the 3-D analysis SAVE predicts high gradient
for the stress component 6, and a much higher peak value of the stress component T, as
compared to those obtained by the BONJO analysis. The edge x/L = 1.0 has been found
to be the critical location of failure initiation between adhesive and lower adherend by
many researchers during their experimental studies. The combination of high tensile value

of the transverse normal stress component o, (also called peel stress) and a higher
magnitude of shear stress component 1, can cause failure initiation at the edge x/L = 1.0.
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Fig. 4.56 Distributions of normal stress o, in the parent laminate at the adhesive-

parent laminate interface at y/b = 0.
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Fig. 4.57 Distributions of normal stress ¢, in the parent laminate at the adhesive-

parent laminate interface at y/b = 0.
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Fig. 4.58 Distributions of normal stress ¢, in the parent laminate at the adhesive-

parent laminate interface at y/b = 0.
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Fig. 4.59 Distributions of transverse shear stress 7,, in the parent laminate at the

adhesive- parent laminate interface at y/b = 0.
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Fig. 4.60 Distributions of normal (peel) stress ©,, in the adhesive at the adhesive
centerline at y/b = 0.
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Fig. 4.61 Distributions of transverse shear stress 7,, in the adhesive at the
adhesive centerline at y/b = 0.

The distributions of the transverse normal stress ©,, and transverse shear stress 7T,; at the
centerline of the adhesive as obtained from the BONJO and SAVE analyses are shown in
Figs. 4.60 and 4.61, respectively. Once again the numerical values of these stress
components compare well from the two analyses except in the vicinity of the edgex/L =
1.0 as shown in Figs. 4.60 and 4.61. Near the vicinity of the edge x/L = 1.0, the 3-D
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analysis SAVE predicts high gradient for the stress component 6., and a much higher peak
value of the stress component 1,, compared to those obtained by the BONJO analysis.

Even modeling of the angleplies as a smeared sub-laminate (such as SL1 in the present
numerical example) in the BONJO analysis does not yield correct values for in-plane
stress components. Furthermore, the BONJO analysis is incapable of predicting the high
gradient of the stress components in the vicinity of the edge x/L = 1.0 (see Figs. 4.56-
4.61) where the 3-D analysis SAVE captured the stress variations in a more accurate
manner. However, it has generally been noted that the distributions of the transverse
normal stress ¢, and shear stress T, in the adhesive and the adhesive/adherend interfaces
as obtained from the BONJO analysis compare reasonably well with those obtained from
the other analytical techniques such as ABAQUS, except in the vicinity of the edge x/L =
1.0 (refer to Section 4.1). Since most of the earlier empirical design processes are based on
the adhesive failure, the closed-form analysis technique BONJO seems to fulfill that
objective by predicting the shear stress, and to some extent the peel stresses in the
adhesive with reasonable accuracy.

4.3.2.2 Stress distributions in Model 2-65 vs. Model 2-75

Next, the effect of change of curing temperature on the stresses in a double-lap bonded
joint is studied. The stress fields for the Model 2-65 and Model 2-75 as obtained from the
SAVE analysis are compared. For the purpose of analysis, the material properties for the
adherends and adhesive are used at -65°F for the Model 2-65, and at 75°F for the Model
2-75.

The distributions of stresses in the parent material along the bondline at the
adhesive/parent material interface, and in the adhesive at the adhesive centerline as
obtained from the SAVE analysis are shown in Figs. 4.62-4.67. As shown in Figs. 4.62-
4.67, the peak values of all the stresses in Model 2-65, in the vicinity of the edgex/L =
1.0 are higher as compared to those obtained for the Model 2-75. (Note that the same
element mesh design is used to analyze all the cases.) Except for the transverse shear
stress component T,,, all other stress components have essentially the same numerical
value from the two models away from the edge x/L = 1.0. The transverse shear stress
component clearly attains a higher numerical value in the vicinity of the edgex/L = 1.0,
both at the adhesive/parent material interface as well as at the centerline of the adhesive.
The combination of higher shear and peel stresses near the edge x/L = 1.0, in all likelihood,
would result in a lower failure load for the Model 2-65 as compared to Model 2-75. Also,
the lower ultimate failure strain of the adhesive at -65° F (y = 0.16 at -65° F as compared

toy=0.33 at 75° F from the data supplied by McDonnell Douglas) also justifies a lower
failure load for the Model 2-65.
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Fig. 4.63 Distributions of normal stress c,,, in the parent laminate at the adhesive-

parent laminate interface at y/b = 0.
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Fig. 4.64 Distributions of normal stress G,, in the parent laminate at the adhesive-

parent laminate interface at /b = 0.
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Fig. 4.65 Distributions of transverse shear stress 7,, in the parent laminate at the

adhesive- parent laminate interface at y/b = 0.
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Fig. 4.66 Distributions of normal (peel) stress G, in the adhesive at the adhesive

centerline at y/b = 0.
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4.3.2.3 Stress distributions in Model 1-75 vs. Model 2-75

The stress fields for Model 1-75 and Model 2-75 as obtained from the SAVE analysis are
compared to study the effect of change in the bond length in a double-lap bonded joint.
As mentioned earlier Model 1-75 has the bond length L = 0.5 inches as compared to
Model 2-75 which has the bond length L = 1.5 inches. For the purpose of analysis the
material properties of adherends and adhesive at 75° F are used for both the models.

The distributions of stresses along the bondline at the adhesive/parent material interface
and at the adhesive centerline as obtained from the SAVE analysis are shown in Figs.
4.68-4.73. As shown in Figs. 4.68-4.73, the numerical values of all the stresses along the
bondline at the adhesive/parent material interface in Model 1-75 are considerably higher
than those obtained for the Model 2-75. Specifically, the transverse normal stress o,,
predicts a larger bending of the lower adherend for the Model 1-75 as compared to the
Model 2-75 as shown in Fig. 4.70 Further , as shown in Fig. 4.71 the magnitude of the
transverse shear stress T,; is nearly doubled for the Model 1-75 as compared to the Model
2-75. A similar conclusion can be reached about the stress distributions in the adhesive at
the adhesive centerline (see Figs. 4.72 and 4.73). Thus, it is evident that the higher
magnitude of the stresses would result in a lower failure load for the Model 1-75 as
compared to Model 2-75.
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Fig. 4.68 Distributions of normal stress ©,, in the parent laminate at the
adhesive- parent laminate interface at y/b = 0.
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Fig. 4.70 Distributions of normal stress G,, in the parent laminate at the
adhesive- parent laminate interface at y/b = 0.
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Fig. 4.71 Distributions of transverse shear stress 7,, in the parent laminate at the
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Fig. 4.72 Distributions of normal (peel) stress G, in the adhesive at the adhesive
centerline at /b = 0.
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Fig. 4.73 Distributions of transverse shear stress T,, in the adhesive at the
adhesive centerline at y/b = 0.

4.3.2.4 Stress distributions in Model 3-75 vs. Model 2-75

The effect of change in the bond thickness on the stresses in a double-lap bonded joint is
studied by comparing the stress fields for the Model 3-75 and Model 2-75 as obtained
from the SAVE analysis. The Model 3-75 has the bond thickness #, = 0.018 inches as
compared to the Model 2-75 which has the bond thickness #,= 0.006 inches. The material
properties of adherends and adhesive at 75° F are used for analyzing both the models.

The distributions of stresses along the bondline in the parent material at the
adhesive/parent material interface and in the adhesive at the adhesive centerline as
obtained from the SAVE analysis are shown in Figs. 4.74-4.79. As shown in Figs. 4.74
and 4.75, the magnitude of the stresses G, and Gy, in the Model 3-75 are slightly higher
as compared to those obtained for the Model 2-75. The magnitude of the stress
component 0, is essentially the same in the two models as shown in Fig. 4.76. However,
the magnitude of the transverse shear stress component T,; is lower in the vicinity of the
edge x/L = 1.0, and higher in the middle region of the bond for the Model 3-75 as
compared to the Model 2-75 as shown in Fig. 4.77. A similar conclusion can also be
reached for the distribution of shear stress 1T, in the adhesive (see Fig. 4.79). In general,
the shear stresses are more uniformly distributed in the bond area for the Model 3-75 as
compared to the Model 2-75.
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adhesive- parent laminate interface at y/b = 0.

117




0.25
—t,=0.006in.
020 - t,=0.018 in.

0.15

0.10

o, / o,

0.05

0.00

-0.05 :
1.2

Fig. 4.78 Distributions of normal (peel) stress ¢,, in the adhesive at the adhesive

centerline at y/b = 0.

0.05
0.00 |

-0.05 |

lo

0.10 |

Xz

-0.15 |

= 0.006 in.

T

-0.20

...... th =(0.018 in.

-0.25: PP SR EPSPYR SP EUS  SS WS S
0 0.2 0.4 0.6 0.8 1 1.2

Fig. 4.79 Distributions of transverse shear stress 1,, in the adhesive at the adhesive

centerline at /b = 0.

118




The lower magnitude of the transverse shear component in the vicinity of the edgex/L =
1.0 suggests a higher failure load for the Model 3-75 as compared to the Model 2-75. (The
magnitude of transverse normal stress component G, is essentially the same for the two
models as shown in Figs. 4.76 and 4.78.) However, this statement is contradictory to
what has been observed experimentally, i.e., the Model 6-75 and Model 6-65 have a lower
failure load as compared to the Model 5-75 and Model 5-65. (see Table 4.3.) For the
same reason, Model 3-75 would have a lower failure load as compared to the Model 2-75.
This contradiction in predicting the failure load on the basis of adhesive shear stress
behavior might be better understood in light of the work by Hart-smith™ wherein he
pointed out the importance of having the lower magnitude of the adhesive shear stress 1,
in the middle region of the bond area. In his words “some part of the bond area must be so ‘
lightly stressed that the adhesive there will never creep; otherwise the bond will
inevitably fail by accumulated damage under sustained load.” Thus, in the middle region of
the bond area, a lower magnitude of the adhesive shear is preferred over a more uniform
distribution of the adhesive shear stress with higher magnitude so as to withstand
sustained loading. In light of the aforementioned statement, the lower failure load for the
Model 3-75 may be justified as compared to the Model 2-75. Moreover, higher normal
stresses Oy, and G, in the parent material at the adhesive/parent material interface would
also contribute to a lower failure load for Model 3-75 as compared to Model 2-75.

4.3.3 Summary

The stresses in a double-lap bonded joint are studied using a quasi-2D analysis BONJO
and a 3-D discrete analysis SAVE. The effect of changein the design parameters such as
bond length, bond thickness and curing temperature on the stress distributions and the
failure loads in a double-lap bonded joint have been analyzed through a combined
analytical and experimental study. The stress distributions obtained from the SAVE
analysis provide an accurate qualitative correlation with the experimental observations for
the various double-lap bonded joint configurations studied. The results of this study are
summarized below:

1. A lower curing temperature results in higher magnitude of stresses in the vicinity of the
critical edge location x/L = 1.0. The combination of high stresses and the lower ultimate
failure strain of the adhesive at -65° F (y= 0.16 at -65° F as compared to y= 0.33 at 75°
F) justifies a lower ultimate failure load at the lower curing temperature.

2. A smaller bond length results in higher magnitude of stresses in the joint along the bond °
length. Specifically, the joint undergoes higher bending resulting in considerably higher
shear and peel stresses in the bonded region thereby resulting in a reduced joint strength.

3. An increase in the bond thickness results in lower shear stresses in the vicinity of the
critical edge location x/L = 1.0, and higher and more uniform shear stress in the middle
region of the bond. Furthermore, the increase in the bond thickness also results in higher
normal stresses Gy, and G, in the parent material at the adhesive/parent material interface
thereby suggesting a lower joint failure load.
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4. The closed-form analysis technique BONJO does not accurately predict the in-plane
normal stresses in the adherends (except when the adherends are either isotropic metallic
plates or unidirectional composite laminates, see Section 4.2 for details) and as such fails
to capture the true geometry and material property variations that give rise to high stress
gradients in the vicinity of the joint corners.

5. The response of the transverse normal stress G, (or peel stress) is more clearly
predicted by the SAVE analysis as compared to the BONJO analysis. In most of the
numerical examples studied, the BONJO analysis code provides a fairly accurate response
of the adhesive transverse shear stress T,,. However, the magnitude of this stress
component as predicted by the BONJO analysis code is lower than that predicted by the
SAVE analysis code for all the cases studied. '

In the absence of either a progressive damage analysis or a suitable failure criterion to
predict the numerical value of ultimate joint failure load, the impact of the accuracy of
numerical values of stresses obtained from the two analyses cannot be ascertained. The
quantitative comparison of failure loads has always been an important issue that needs to
be addressed fully justifying the need of 3-D analysis versus a 1-D or a 2-D simplified
stress analysis. However, the importance of having a full 3-D analysis such as SAVE that
utilizes the least amount of analytical simplifications as compared to any other analyses
techniques cannot be undermined. A full 3-D analysis is necessary if one has to gaina
complete insight into the stress response of a complex structural configuration such as an
adhesively bonded joint.

44 SOFTWARE DEVELOPMENT

A user friendly PC based software package has been developed for the stress analysis of
composite bonded joints. The bonded joint design software is based on BONJO I
computer codes developed by Dickson et. al* at the Lockheed Cooperation. BONJO I
incorporates analytical tools for determination of stress distribution in the overlap (bond)
region of the adhesively bonded joints.

There are three design modules in the software package to analyze (i) a single-lap bonded
joint with identical adherends, (ii) a single-lap bonded joint with different adherends, and
(iii) a double-lap bonded joint. A common material database module links with all the
three design modules for selecting material properties of the jointed plates and the -
adhesive. The design package is easy to acclimatize, and does not require prior knowledge
of complex mathematical theories to work with it. Online help is available within the
software which provides technical support on a variety of topics ranging from FAQs
(Frequently Asked Questions) on how to create input/output, to more complex questions
requiring explanations on mechanics of the analytical model. The Bolted and Bonded
Joints (BBJ) software is distributed on four(4) 3.5” diskettes along with a user’s manual
explaining the steps involved in the use of these modules.

120




5.0 THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF COMPOSITE-
TO-METAL AND COMPOSITE-TO-COMPOSITE BONDED JOINTS

5.1. INTRODUCTION

Application of three-dimensional solid finite elements gains increasing interest in the numerical
analysis of composite structures. Among the most popular types of solid elements is the family of
rectangular hexahedra: 8-node (linear displacement) element with 24 d.o.f; 20-node (quadratic
displacement) “serendipity” element with 60 d.o.f.; 27-node “full Lagrange” type (quadratic
displacement) element with 81 d.o.f.; 32-node (incomplete cubic displacement) element with 96
d.o.f.; 64-node (complete cubic displacement) element with 192 d.o.f.; 8-node (incomplete quintic
displacement) element with 96 d.o.f.; "Hermite" type element with both displacements and
displacement derivatives as d.o.f., etc.

Several types of 3-D numerical analyses have been applied to bonded joints in [75]-[78]. The finite
difference analysis of double-lap joints presented in [75] have addressed specifics of the 3-D stress
variations, double-edge effect at the corner points and inability of capturing it by a 2-D plane strain
analysis, the effect of adhesive layer treated as distinct 3-D entity, and discussion on the failure
criteria and fracture mechanics applicability. However, not all of the suggestions and conclusions
(specifically, those regarding stress singularities) have been validated due to the difficulties with
satisfying some of the boundary conditions and absence of the convergence study. An 8-node
hexahedron finite element developed in [76] for bonded joint analysis contains substantial
simplifications, which deprive many features of the full 3-D analysis. A 3-D finite element analysis
of single-lap joints was presented in [77). A quasi 3-D finite element analysis of double-lap
composite-to-metal joints using the 27-node “full Lagrange” hexahedron has been applied in [78]
using the “submodeling” technique available in ABAQUS [72]. This section briefly reports a
comprehensive numerical study performed for composite-to-metal and composite-to-composite
double-lap joints using the approach [78]. A 3-D stress analysis in the presence of initial debond
crack, introduced along the line of singularity at the end of the overlap, is also presented.

5.2. THE CONCEPT OF SUBMODELING

The major difficulty faced when performing 3-D analysis of bonded joints is that there are several
zones of high stress gradients, and also several lines of possible singularities. Obviously, an
accurate stress characterization near the lines of singularity with the use of uniform element mesh
would require extremely high refinement and, accordingly, be computationally expensive. On the
other side, when using nonuniform element meshes (for example, by applying “parametric
refinement” available in ABAQUS), the element aspect ratio may become very high and, thus,
cause the indication of “zero or negative element volume error.” Both these computational
problems have been faced by the investigators when directly using C3D27 element in the analysis
of double-lap joints. Particularly, the attempts to accurately compute stresses in relatively thick
bonded joints with a thin adhesive layer (which was, indeed, modeled as distinct 3-D elastic entity)
revealed severe limitations. Accuracy of the computed stresses was highly questionable. Thus,
more sophisticated capabilities available in ABAQUS have been explored. The global-local type
“submodeling” technique showed as a viable approach.

The idea how to apply the submodeling technique to the bonded joint problems can be explained
using the specific example shown in Fig. 5.1a. Clearly, only those regions of the structure have to
be analyzed in great detail (i.e., using fine element meshes), which are close to the corner lines AB
and CD. Accordingly, the stress fields can be computed in several steps, by successively
performing 3-D analysis for smaller and smaller local regions. When using such a multi-step
approach, the computed nodal displacements from some “predecessor” local analysis are applied as
the input geometric boundary conditions for the “successor” local analysis. If this methodology is
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implemented correctly, then each next step should provide increasingly accurate stresses in the
zones of high stress gradients. Ultimately, if it is known that the stresses are finite everywhere in
the structure, their values can be computed with any prescribed accuracy after a certain number of
the submodeling steps. In principle, the number of consecutive local analyses is limited only by

patience of the analyst and physical time allocated for the specific problem. An experienced analyst -

can easily optimize the submodeling strategy.
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Figure 5.2. Schematic of the global and local regions considered in the analysis.
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Another important feature (which is, indeed, a common place for any global-local type analysis) is
that after the initial step (i.e., global analysis) different local regions of the structure are analyzed
independently. This is illustrated in Fig. 5.2, where the side view, x-z, and top view, x-y, of the
structure are shown. In the local analyses, regions 1 and 2 are solved independently, and the
number of d.o.f. used for the analysis of each local region may be even lower than in the initial
global analysis. In other words, instead of performing stress analysis of the whole structure in one
step, the analysis of its small portions is performed in several independent steps.

5.3. THREE-DIMENSIONAL STRESS ANALYSIS OF COMPOSITE-TO-
METAL BONDED JOINT

A double-lap bonded joint shown in Fig. 5.1a is considered here. The structure is exposed to
uniform uniaxial extension. The displacement u, having some known value u, is applied
uniformly at the right and left ends of the middle adherends. It is assumed that both the upper and
lower adherends are made from the same material and have identical geometric characteristics.
Also, it is assumed that both the right and left middle adherends are made from the same material,
have identical geometric parameters and are placed symmetrically with respect to the plane
perpendicular to the x-axis and passing through the center points of the upper and lower
adherends. These assumptions allow one to apply symmetry conditions in all three coordinate
directions and, accordingly, reduce the original structure to its 1/8" part, as shown in Fig. 5.1b.
Accordingly, the full set of boundary conditions is as following:

u, =0 at x=0; u,=uy at x=a; u,=0 at y=0; u,=0 atz=0 57

The upper and lower adherends are made from unidirectional graphite/epoxy (Gr/Ep) composite
with the following elastic properties: 4

E; =164GPa (23.86Msi), Ep =9.82GPa (1.426Msi),
G, =6.78GPa (0.9825Msi), Gr =3.66GPa (0.5306Msi), v r =0.24 (58)

Direction of the reinforcement in the composite adherends is along the x-axis. The middle
adherends are made from aluminum (Al) with the following properties:

E=73.7GPa (10.7Msi), v=0.25 _ 59
Geometric parameters used in the analysis are:
alay=ala, =alb=4, alh=alhy=alh;=20 (60)

1t is further assumed that adhesive material provides perfect bonding, but due to a small thickness
of adhesive layers those are not explicitly considered in this analysis.

The initial step is to perform global analysis of 1/8" part of the structure shown in Fig. 4.1b. For

brevity of the element mesh description, the following notations of the number of elements in the
x, y and z-directions are introduced:
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Ng, for 0<x/a<x,/a, N}, for x,/a<x/a<x,l/a, Nj, for x,/a<xla<x.la,
2 for x./a<xla<xyla, N}, for x;/a<x/a<zx,la,

Ny for x,/as<x/a<x;l/a, N for x;/a<x/asl,

N3, for 0<y/b<l, 61)
NG, for 0<z/h<z//h, Nj for zj/h<z/h<1, N§ for 0<z/h<z, /h,
Ny for z/h<z/h<z;/h, Nf, for zj/h<z/h<z,/h, N, for z,,/h<z/h<]

Values of x,, x, and z; should be defined considering specific structural configurations.
Coordinates x,, x., x;, X¢, z; and z,, will be later on used for determining boundaries of the

local regions. Their choice is dictated by the analyst’s intuition. On one side, it is desirable to take
them as close as possible to the corner lines AB and CD, because if solving smaller local regions
the number of required steps of submodeling would be reduced. On the other side, the coordinate
values should be at some reasonable distance away from the corner lines AB and CD, because if
the local regions are too small, the global analysis has to be huge in order to provide converged
displacements and stresses at the boundaries of the local regions. The following specific numerical
values have been adopted in the analysis:

x,/a=021, x,/a=025, x,/a=0.29, x;/a=046, x,/a=0.50, xsla=0.54,

zx/h=04, z,/h=05, z,/h=0.6 (62)
Table 5. describes global element meshes used in the global analysis. For the variants G.1-G.6,
uniform meshes were applied inside each of the intervals in the x-direction. The nonuniform
meshes were applied in the y and z-directions.

Table 5.1. Element meshes used in global analysis.

No. of mesh Ni, | N5 | NE x| N5 | NE | NG ’I N}, I N | NE Total d.o.f.
G.1 2 2 2 4 2 2 2 4 T 414 11,691
G.2 4 | 4 4 8 4 4 4 4 4 4 22,923
G3 4 8 8 8 8 8 4 4 4 | 4 34,155
G4 4 112 {12 1 8 |12 ] 12 | 4 4 4 | 4 45,387
G5 4 116 116 [ 8 |16 | 16 | 4 4 4 | 4 56,619
G.6 4 120 |20 { 8 120 {20 ] 4 4 4 14 67,851
G.7 4 8 8 8 8 8 4 5 2 12 41,745
G.8 4 8 8 8 8 8 4 10§l 2 |2 79,695
G.9 4 8 8 8 8 8 4 5 4 | 4 41,745
G.10 4 8 8 8 8 8 4 5 6 |6 61,017
G.11 4 8 8 8 8 8 4 5 8 | 8 80,289

The element next to the mid-plane, y =0, was always chosen the largest of all elements in the y-
direction. The element next to the free edge, y = b, was always chosen the smallest of all elements
in the y-direction. The lengths’ ratio of the largest to smallest elements in this direction was 40. In
the z-direction, the largest element in Al adherend is next to the mid-plane, z=0, and the smallest
element is next to the interface, z=0.5h. Their lengths’ ratio in this direction was 8. Analogously,
the largest element in the Gr/Ep adherend is next to the top surface, z = A, and the smallest element
is next to the interface, z=~#;. Their lengths’ ratio in the z-direction was 8. For the variants G.7
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and G.8, uniform meshes were used inside each interval in the x and y-directions; nonuniform
mesh with the element ratio 8 was used in the z-direction. For the variants G.9-G.11, uniform
meshes were applied in all of the intervals and all of the coordinate directions.

The main objective of the global analysis is to obtain converged displacements at all points of the
structure. It is expected a priori that the task would be most difficult for the corner lines AB and
CD (shown in Fig. 5.1b). The convergence study performed for all three displacements is
illustrated in Table 5.2 for one point of the line AB. If applying the simplest convergence criterion,
namely, a monotonous decrease of the error factor with the mesh refinement, it can be concluded
that convergence of u, and u, is very fast and can be achieved with a rather coarse element mesh,

while in order to obtain converged u,, a much finer element mesh is required.

In the next step, local regions 1 and 2 shown in Fig. 5.2 are solved separately using nodal
displacement values calculated in the global analysis as the input data. The same 27-node element is
used in all local analyses and for both local regions. In principle, any number of successive
submodeling steps can be applied, using converged displacements computed in some preceding
step for more accurate stress computation in the successive step. If applied correctly, this should
consistently increase accuracy of the stress predictions for the local regions.

Table 5.2. Normalized displacements at x=0.5a, y=0.8b, z=0.52 computed with
the element meshes of Table 5.1. :

Displacement u, /ug uy, / ug u, luy
G.1 0.34079 | -0.05446 | 0.00180
G.2 0.34100 | -0.05445 | 0.00264
G.3 0.34107 | -0.05447 | 0.00306
G.4 0.34110 | -0.05447 | 0.00319
G.5 I 034111 [ -0.05448 | 0.00325
G.6 0.34112 | -0.05448 | 0.00328

G.7 0.34108 | -0.05445 | 0.00317
G.8 0.34102 | -0.05446 | 0.00308
G.9 0.34069 | -0.05444 | 0.00298
G.10 0.34111 [ -0.05445 | 0.00319
G.11 0.34135 | -0.05446 | 0.00328

Mesh parameters used in the first step local analysis for the region 1 confined between the vertical
planes x,/a=0.46 and x,/a=0.54 (this will be called “Submodel 1” analysis) are presented in
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Table 5.3. All of the x-direction meshes are nonuniform with the ratio of the largest to smallest
elements [, = L7* /L;rlirl = 20. The largest elements are next to the vertical planes passing through
xg and x ¢, and the smallest elements are on both sides of the vertical plane passing through x,.
All meshes in the y and z-directions are uniform inside each of the intervals, i.e.,
=L} /L™ =1and [, = L7 /L™ =1.

Table 5.3. Various x-direction meshes used in Submodel 1 analysis.

No. of mesh “ N ;} II N01 || N | N | NE | N Total d.o.f.
[— ———— ﬁ
L1.1 4 4 4 4 4 4 27,279
L1.2 6 6 4 4 4 4 39,879
L1.3 8 8 10 4 4 4 4 52,479
L1.4 10 ] 10 10 4 4 4 4 65,079
L1.5 i 12 ] 12 J 10| 4 4 4 4 77,679

Table 5.4. Stresses in Al and Gr/Ep adherends at x=0.5a, y=»b, z=0.5h
computed with the element meshes of Table 5.3.

Adherend || Al || CTEE
[ Swess | 0./00] 0,/00] %x/0 | 0:/00 | 0./0 | %x/00 |

L1.1 | 3.5386 | 1.6561 -1.3270 § 3.9617 | 2.0263 | -1.1943
L1.2 [| 3.6008 1.7096 | -1.4071 || 3.9139 | 2.0412 | -1.2072
L1.3 I 3.6276 | 1.7325 -1.4619 || 3.8834 | 2.0454 | -1.2151
L1.4 I 3.6399 1.7431 -1.5003 §| 3.8637 | 2.0468 | -1.2205
L1.5 | 3.6482 1.7493 -1.5299 | 3.8499 | 2.0474 | -1.2248

Results for the normalized stress components ¢, /0y, 0,/0 and 7,, /0 are presented in Table
5.4. The normalization factor 0y =0.961GPa (0.1393Msi) is the nominal longitudinal stress
calculated at x = a from Hooke’s law, assuming that the longitudinal strain value £y =1% atx=a
(this corresponds to the applied displacement uy =0.01a). Again, if applying the convergence

criterion of a monotonous decrease of the error factor, all three stress components under
consideration show convergence in both adherends with the x-direction mesh refinement.

Next results illustrate the effect of different meshes in the y-direction. Most interesting here is to
study stresses at the point x=0.5a, y=b, z=0.5h, which belongs simultaneously to the
interface and free edge. In order to develop efficient computational strategies, the interval
0<y/b<1 was first divided into two subintervals. The following notations of the number of

elements have been introduced: NJ, for 0<y/b<0.8 and N, for 0.8<y/b<1. Uniform
Og gl

meshes were used for the interval 0<y/b<0.8 and nonuniform meshes for the interval
0.8 <y/b<1. The mesh parameters are given in Table 5.5. It was taken [, =20, [, =1. Results
for the stresses calculated with these meshes are presented in Table 5.6. It is seen that even at the
point x=0.5a, y=>b, z=0.5h all three stress components show convergence.
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Table 5.5. Element meshes in the y-direction used in Submodel 1 analysis.

No. of mesh !l Ngg Ngl I, for 0.8<y/b=1
L6 | 4 1

4
117 | 4 7 10
Lis || 4 7 20
Tio | 4 7 20
L0 | 4 7 80
Tl || 4 7 160

Table 5.6. Stresses in Al and Gr/Ep adherends at x=0.5a, y=b, z=0.5k
computed with the element meshes of Table 5.5.

Adherend || Al | Gr/Ep
Stress I o,/0yg| 0,/0p T/ 00 | c,/oy | 0,/00 | T, /00
L1.6 3.5152 | 1.7037 | -1.4388 | 3.8081 | 2.0097 | -1.1954
L1.7 3.2098 | 1.6709 | -1.4384 ] 3.5948 | 1.9763 | -1.1655
L1.8 3.0852 | 1.6560 | -1.4500 | 3.4945 | 1.9687 | -1.1594
L1.9 20824 | 1.6317 | -1.4572 || 3.4096 [ 1.9629 | -1.1561
L1.10 2.9317 | 1.6141 | -1.4593 || 3.3647 | 1.9603 | -1.1554
L1.11 2.9249 | 1.6091 | -1.4599 | 3.3535 | 1.9614 | -1.1564

The next step is to study stress convergence with refining element mesh in the z-direction. To
perform this more efficiently, the second step of submodeling is made. The local region having the
same dimensions in the x and y-directions as before, but reduced in the z-direction (confined
between horizontal planes z; /h=0.4 and z,/h=0.6) is considered. The displacement values
obtained from the Submodel 1 analysis with mesh L1.10 have been used as the nodal displacement
input.

The number of elements in the z-direction and mesh nonuniformity are described in Table 5.7. For
meshes L2.5 and L2.6, I, =2 or 4 for each of the intervals, 0.4<z/h<0.5 and 0.552/h<0.6
(size of the elements decrease toward z/h =0.5). The other parameters of meshes L2.1-12.6 are:

N}, =8, ‘ef}=8, 1, =20 for both intervals 0.46<x/a<0.5 and 0.5<x/a<0.54; Ngg=4,
I,=1 for 0<y/b=<03; Ng =4,1,=80 for 0.8<y/b<l.

Table 5.7. Element meshes used in Submodel 2 analysis.

No. of mesh N N, I, Total d.0.f.
2.0 || 4 | 4 [ 1 | 2208 |
122 | 6 | 6 [ 1 32,283
123 || 8 [ 8 [ 1 [ 42483
124 | 10 | 10 [ T [ 52683

— 125 || 10 | 10 _ 2 52,683
L2.6 | 10 10 4 52,683
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Table 5.8. Stresses in Al and Gr/Ep adherends computed in Submodel 2 analysis.

Adherend I Al [l Gr/Ep

Stress |0'x/0'0 c,/0p T /00 || 0./00 | 0,/00 | T,.,/0

L2.1 | 2.9317 1.6141 -1.4593 || 3.3535 | 1.9614 | -1.1564
L2.2 3.3443 1.9078 | -1.6398 | 3.8974 | 2.3755 | -1.3130
L2.3 3.6522 | 2.1184 | -1.7543 [ 4.3609 | 2.7049 | -1.4336
L2.4 3.8874 | 2.2720 | -1.8329 || 4.7726 2.9756 | -1.5326
L2.5 [[42424 | 2.4822 | -1.9371 || 5.5438 | 3.4378 | -1.7123
L2.6 | 4.5522 | 2.6178 | -2.0013 | 6.4947 | 3.9354 | -1.9467

Numerical results for the normalized stresses at the point x=0.5a, y=b, z=0.5h are presented
in Table 5.8. In the case L2.6, a violation of the allowed smallness of the element aspect ratio has
been indicated in ABAQUS, therefore the results for this variant are not reliable. However, even
considering variants L.2.1-L2.5 it is clear that the stresses do not converge at the point under
consideration. Thus, mesh refinement in the z-direction indicates stress singularity.

A comparison between numerical results obtained in the global and local analyses is presented in
Fig. 5.3. The global analysis results correspond to the mesh G.11 of Table 5.1 and the Submodel
2 analysis results correspond to the mesh L2.5 of Table 5.7. The advantages of using the
submodeling technique can be summarized as following:

* Stress values at the peaks are considerably higher when using the local analysis (it should be kept
in mind, however, that this statement has only a relative meaning, because the peak values tend
to infinity with the mesh refinement).

* Stress variations are much smoother in the case of the local analysis.

* Local analysis provides practically zero values of o, and 7,, everywhere at the traction-free
surface of the middle adherend, with the exception of a narrow region near the end of the
overlap, while global analysis does not satisfy these boundary conditions so accurately.

It has to be noted that, starting at some distance from the corner line x/a= 0.5, the results
obtained from the global and local analyses become practically. indistinguishable. In particular, both
the analyses provide practically identical stresses at the ends of the local region, x/a=0.46 and
x/a=0.54. Note that 7, is tensile and its values near the corner line AB are significantly higher
than the nominal stress 0. Even the shear stress 7,, exceeds 0, near the comer line. This
confirms that the transverse stresses should be the primary concern as the cause of initial failure.

The problem under consideration is essentially three-dimensional. From this standpoint it is
worthwhile illustrating that there is a considerable variation of the stresses in the width direction,
which cannot be predicted by the two-dimensional (either plane strain or plane stress) analyses.
Variations of o,, o, and T, in the y-direction for x/a=0.5, z/h=0.5 (corer line AB) for
half-width of the joint are shown in Fig. 5.4. The results correspond to the mesh L.2.4 of Table
5.7. Total number of elements in the local region was 16, 8 and 20 in the x, y and z-directions,
respectively. It is seen that for the main part (about 90%) of the joint width all three stress
components are practically constant, however near the free edge there is a considerable stress
variation. It is interesting that the stresses decrease toward the free edge. The results also show that
0, and 7,, computed from the sides of Al and Gr/Ep adherends have considerable jumps at the
interface along the whole width of the joint. Ideally, these stress components should be
continuous. The observed drawback cannot be fixed by simply refining finite element mesh.
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5.4. STRESS ANALYSIS IN THE PRESENCE OF INITIAL DEBOND CRACK

As indicated by the above stress convergence study, some stress components are singular at the
corner line AB. This means that if considering failure as the phenomenon occurring at some point
of the structure (which is physically unreasonable but commonly implied in the mathematical
failure criteria), then initial failure must simultaneously occur at all points of the line AB even under
an infinitesimal load. Accordingly, the initial failure in the form of debond crack starting at AB
should be observed immediately after the load is applied. Thus, prediction of the failure initiation
following the point-wise stress/strain failure criteria for the problem under consideration is
impossible. The following two alternative approaches are visible to avoid this obstacle: (i) to
compute average stresses along some finite width area near the line AB or (ii) to introduce an initial
debond crack at the interface between Al and Gr/Ep adherends, starting at the end of the overlap
and extending into the overlap. The latter approach could have been allowed to reformulate the
boundary value problem and obtain solution in which singular stresses are relieved at the end of the
overlap and appear at the crack tip.

An analysis with debond crack can be computationally performed using existing capabilities of 3-D
ABAQUS elements: the debond crack of a given length can be introduced by detaching certain
nodes which belong to the interface. Consequently, a number of double nodes would be created,
one of them belonging to the Gr/Ep adherend and the other one to Al adherend. If this is performed
only for that part of the interface where o, is tensile, then the adherends should separate along the
whole area of detached nodes. This means that the debond crack, which configuration is defined
by the area of detached nodes, would open, even under the in-plane tensile loading. Taking into
consideration that the stresses are singular along the whole comer line AB, it is reasonable to
detach the nodes along some area AA’B’B, as shown in Fig. 5.5. Length of the initial debond
crack, denoted Ax = x, — x, , can be chosen arbitrarily.

Two numerical examples are considered as an illustration of the described approach. They
correspond to the cases of nodes detached along the area AA’B’B with x, /a= 0.498 (further
referred as Crack 1) and x, / a=0.495 (Crack 2); recall that x,/a=0.5. The nodal displacements

obtained from the Submodel 2 analysis without debond crack (corresponding to the element mesh
L2.5 of Table 5.7) were used as boundary conditions for the local analysis with the debond crack.
Two local analysis variants were performed for the aforementioned crack lengths; they are further

referred to as C.1 and C.2. The following number of elements have been taken: Nje- =38,

N;,=8, N =8 for both cases C.1 and C.2. The value [, =5 has been applied for the intervals

049<x/a<0498 and 0498<x/a<0.5 in the case C.1 and for the intervals
0.49<x/a<0.495 and 0.495<x/a<0.5 in the case C.2. In both cases, the highest mesh
refinement was applied near the crack tip, x/a=0.498 for C.1 and x/a=0.495 for C.2. The
uniform x-direction mesh was used for the interval 0.5<x/a<0.51. Other mesh parameters are
the same as in variant L2.5 of Table 5.7. Results obtained from the Submodel 2 analysis with the
mesh L2.5 have been used for a comparison.

Variations of 0, 0, and 7, in the x-direction computed without crack, with Crack 1 and with
Crack 2 are shown in Fig. 5.6. It is seen in Figs. 5.6a that a variation of ¢, in Gr/Ep adherend
radically changes in the presence of debond crack. In addition to the tensile peak there is also a
compressive peak. When the crack length increases, the compressive peak is growing, while
tensile peak is decreasing. Note that o, is practically zero at the location x/a=0.5 when using
analysis with debond crack, while that was significantly nonzero in the analysis without crack
(compare to Fig. 5.3a). Thus, o, at the right edge of the upper adherend is relieved by a debond
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Figure 5.5. Initial debond crack at the and of the overlap zone.

crack. When considering &, in Al adherend shown in Fig. 5.6b, it is seen that the stress is tensile

along the whole interval. The stress peak (which now takes place at the crack tip) is considerably
higher than in the case without crack. Note that the peak grows when increasing the crack length.

Variations of 0, in the x-direction are shown in Figs. 5.6c and 5.6d. For both the Gr/Ep and Al
adherends, this stress component is tensile in all three cases. Its peak monotonously decreases in
the upper adherend with the increasing length of the crack. However, in the lower adherent the
trend is quite different: there is some crack length which provides the highest peak. It is worth
mentioning that for both the crack length cases, o, in both the adherends is very small along the
whole crack length, so the stress has been relieved from the end of the overlap.

Variations of 7, in the x-direction are shown in Figs. 5.6e and 5.6f. In the upper adherend these
variations are radically different for the cases with and without debond crack. There are both
positive and negative peaks, while only one peak with a monotonous stress variation was obtained
in the analysis without debond crack. For the middle adherend, the highest peak is observed in the
case of Crack 1, similarly to the trend for ¢, (compare to Fig. 5.6¢). It is also seen that 7, values

at the traction-free crack surface are very close to zero in the upper adherend and slightly deviate
from zero in the middle adherend.

Presented results reveal some basic features of the stress variations in perfectly bonded double-lap
joints having small initial debond crack. The results seem reasonable and reflect the expected trend:
high peaks of the transverse stresses are relieved from the end of the overlap zone and shifted to
the debond crack tip. Accordingly, another analytical problem emerges: to analyze debond crack
propagation. A number of analytical and numerical fracture mechanics approaches are known for
analyzing crack growth conditions (for example, a critical energy release rate or stress intensity
factor approaches), however the revealed specifics of the stress fields in bonded joints, e.g.,
presence of at least three significant stress components (0, 6, and 7,,), while each of them are

substantially contributing in the crack propagation process, as well as extremely high stress
gradients, will make fracture analysis of bonded joints a rather complex problem.

5.5. ANALYSIS OF COMPOSITE-TO-COMPOSITE ADHESIVE BONDED
JOINT

In the previous example it was assumed that the structure shown in Fig. 5.1 is perfectly bonded,
but adhesive layers have zero thickness and, therefore, are not included in the analysis as physical
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entities. Here we will illustrate the effect of a finite-thickness adhesive layer in the analogous
double-lap joint problem. Schematic of a structural element under consideration is shown in Fig.
5.7a. As before, the structure is exposed to uniform uniaxial extension. The applied displacement
ug is uniformly distributed along the right and left ends of the middle adherends. All four
composite adherends are made from the same material and have equal thickness. Also, both the
right and left middle adherends have equal length and are placed symmetrically with respect to the
plane perpendicular to the x-axis and passing through the center points of the upper and lower
adherends. It is also assumed that all four adhesive layers have identical elastic properties and
geometric parameters. The above assumptions are allowing to apply symmetry conditions in all
three coordinate directions and, accordingly, to reduce the analysis to 1/8" part of the joint, as
shown in Fig. 5.7b. The full set of geometric boundary conditions is exactly the same as in (5.1).
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Figure 5.7. Schematic of a composite-to-composite adhesive bonded joint (a) and
its 1/8" part (b) considered in the analysis.

All of the adherends are made from 16 layers (all layers are placed in the x-direction) of
unidirectional graphite/epoxy Hercules AS4/3501-6 tape having the following elastic properties:

E; =137GPa (200Msi),  E; =10.57GPa (1.54Msi), v =0.30,

Gy =5.15GPa (0.750Msi), Gy =3.47GPa (0.506Msi) (63)
The bonding adhesive is Cytec FM300-2K film with the following elastic characteristics:
E =3.43GPa (0.50Msi), v=0.30 (64)

The following geometric parameters are considered in the analysis:

a=45.72cm (18.0in), a; = a3 =20.32cm (8.0in), ay =5.08cm (2.0in), b=1.27cm (0.5in),
h=0.3556cm (0.14in), hy = hy =0.2286cm (0.09in), hy, =0.1143cm (0.045in), (65)
h, =0.0127cm (0.005in)

134




Mechanical tests of experimental double-lap joint specimens with the above material properties and
geometric characteristics have been reported in [79].

It is recognized from the above geometric characteristics that the aspect ratios are a/h =129 for the
overall joint and a, / h, = 400 for the adhesive layers. An accurate direct 3-D stress analysis of the

structure with this kind of geometric configuration would be a very computationally expensive
task. Indeed, if utilizing uniform element meshes, a huge number of elements will be required. On
the other side, if using nonuniform element meshes, the element aspect ratio may become too high
before the required accuracy is achieved. Actually, both the uniform and nonuniform types of
element meshes have been tried by the investigators, and the aforementioned difficulties were
faced. It was concluded that the best one can hope when using a direct global analysis is to
accurately predict 3-D displacement fields. In order to obtain sufficiently accurate stresses, a
global-local type analysis should be used. The submodeling technique described in Section 5.2 has
thus been applied to the example of 3-D stress analysis of thin composite-to-composite adhesive
bonded joints.

Like in the previous example, an initial step is to perform global analysis of the structure shown in
Fig. 5.7b, using successively refined meshes of elements. The objective is to obtain converged
displacements everywhere in the structure. After that, the local regions are selected and solved
separately with the corresponding nodal displacement taken from the global analysis as the
boundary conditions. Schematic of the global and local regions is shown in Fig. 5.8.
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Figure 5.8. A view of global and local regions in' the planes x-y (a) and x-z (b).

Without further dwelling into computational details, we present illustrations of the stress variations
computed from the global and local analyses. Consider local Region 1 shown in Fig. 5.8.
Variations of the normalized stresses 6, /0, 0,/0 and 7, / 0 in the x-direction obtained from
the global and submodel analysis are shown in Fig. 5.9 for the lower interface and Fig. 5.10 for
the upper interface. As seen in Fig. 5.9a, in the adhesive the difference between results near the
corner point is considerable: the submodel analysis provides smooth stress variation and much
higher peak value. On the contrary, results for the adherend in Fig. 5.9b are very close. Note that
at the right end, o, in adherend tends to Oy, and at the left end it tends to 0o/2. It has to be
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pointed out that the region of high stress gradients is very small compared to the length of the
overlap zone. Analogous trends are seen in Figs. 5.9c and 5.9d for the stress 0,/0;: in the
adhesive there is a significant difference between the results, while in the adherend they are very
close. It has only to be added that, as seen in Fig. 5.9d, the submodel analysis is satisfying the
free-surface boundary condition with much higher accuracy. The 7,, /0 variations in the adhesive
shown in Fig. 5.9¢ are rather close; the minor difference is near the comner point: the submodel
analysis provides smoother variation of the stress and higher peak value. At the same time, Fig.
5.9f shows that the variations of 7, /0 in the adherend are very different near the corner point: a
characteristic “double peak™ is barely seen in the global analysis results, while this is very obvious
in the submodel results.

The results presented in Fig. 5.10 for the upper interface at some very small distance from the
corner point, show that the difference between the global and submodel solutions for all thrée
stress components is only quantitative. In each case the submodel analysis shows smoother stress
variation near the comer point and higher peak value. However, there are some problems in both
the analysis approaches. Namely, Fig. 5.10a indicates that the very right point of the ¢, variation

in the adhesive does not tend to be zero, as is required by the free surface boundary condition.
Though, as is seen in Fig. 5.10b, the very right point of the ¢, variation in the adherend is close
to zero (this may be occasional). Where will this point move with further mesh refinement?
Possibly, to increasingly higher negative value. The same questions arise when analyzing results in
Fig. 5.10c and 5.10d. Ideally, the stress component 7,, should be zero at the very right points of
the stress variations in the adhesive and adherend. However, it seems that their trend is to take
some negative values which will probably grow with further mesh refinement.

A general conclusion is that the explored submodeling technique showed significant accuracy
improvement of the stress computation near the ends of the overlap in composite-to-metal and
composite-to-composite bonded joints.

The obtained results show that even at a small distance from the line of singularity, the stresses
computed with the global analysis and with the submodeling technique are practically
indistinguishable. The difference appears only in a small vicinity of the line of singularity, where
submodeling definitely improves the stress computation. However, even by using more and more
localized stress analyses, it seems impossible to numerically satisfy all of the required stress
boundary conditions at the end of the overlap. It can be argued that the problem is of a purely
academic interest, because exactly at the end of the overlap the stresses are singular anyway, so
mathematical failure criteria does not apply there and, accordingly, failure initiation prediction is
impossible. On the other hand, if applying averaging of the computed stresses along some finite
length zone near the end of the overlap, obtaining exact stress values at the points close to the line
of singularity may be unnecessary.
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6.0 CONCLUSIONS AND RECOMMENDATIONS
6.1 SUMMARY AND CONCLUSIONS

During the SBIR Phase II work on the strength and life prediction of adhesively bonded composite
joints, the following tasks were undertaken:

1. A comprehensive literature survey on the state of the art in the strength and life prediction of
composite bonded joints.

2. Development of a versatile three-dimensional hygrothermomechanical analysis of structures
using variable-order (similar to p-type) rectangular and cylindrical solid elements.

3. Comparison of various 2-D and 3-D analytical tools available for the stress analysis and/or
strength prediction of bonded composite joints, and outline their capabilities and limitations.

4. A combined analytical and experimental study of the effect of design parameters such as bond
length, bond thickness and adhesive curing temperature on the failure loads of a double-lap
adhesively bonded joint.

5. Application of a submodeling technique available in commercial finite element package
ABAQUS to study the stress field in the vicinity of free-edges and debond cracks.

6. Development of a PC-based design methodology for composite bonded joints.

The outcome of this work is discussed in the following paragraphs.

In the last three decades extensive work has been performed in the area of stress analysis and
strength prediction of composite bonded joints. This has resulted in a number of analytical models
and computer packages developed for the purpose of bonded joint analysis and design. Most of the
analyses approach consider one dimensional or quasi-two-dimensional state-of-stress in the
vicinity of the joint corners thereby neglecting the double-free edge effects, and hence, the
influence of interlaminar transverse normal and shear stresses on the failure mechanisms.
Nonetheless, the design and analysis software based on the these approaches have proven
themselves to be effective tools in the design of bonded composite joints. However, the
development of an analysis and/or design capability that accounts for a three-dimensional state-of-
stress in the adherends in the vicinity of the double free-edge formed by the joint corners, and that
incorporates a failure criterion based on interaction of interlaminar normal and/or transverse shear
stress components is imperative for the timely enhancement of the technology in the area of bonded
joints utilizing advanced composite materials.

Mathematical formulations for the displacement-based variable-order solid elements are presented
for the three-dimensional linear elastic, hygrothermomechanical analysis of structures. The
computational algorithm SAVE using variable-order rectangular and cylindrical solid elements has
been developed in FORTRAN. The computer code is currently based on the displacement field
being approximated by Bernstein polynomials in the three coordinate directions. The SAVE
program is subsequently utilized to analyze a number of benchmark problems and compare the
numerical results. Based on the results obtained from the displacement-based analyses using
variable-order rectangular and cylindrical solid elements, the following conclusions are drawn:

(i) The continuity of stresses at the interface(s) of the elements of the same material or of different
materials is achieved with a very high accuracy without enforcing it a priori. .
(i) The static (or natural) boundary conditions at the external surfaces are satisfied with a very
high accuracy. :

(iii) In most cases the analysis using variable-order elements requires less degrees of freedom to
solve the problem and achieve the same or even higher accuracy of the solution.

(iv) There is always an optimum level of order M of the variable-order elements beyond which
there is not much significant improvement in the accuracy of the solution. Thus, it is preferable to
achieve an optimum combination of the order M and the number of variable-order elements to
analyze a given structural problem.
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Subsequently, the comparisons among 2-D analysis code BONJO and 3-D analyses codes SAVE
and ABAQUS were performed by analyzing a number of double-lap composite bonded joints
subjected to thermomechanical loading. A combined analytical and experimental study of the effect
of design parameters such as bond length, bond thickness and adhesive curing temperature on the
failure loads of a double-lap adhesively bonded joint was also undertaken. The results obtained
from these studies lead to the conclusion that the BONJO solution approach provides reasonably
accurate stress distributions in the adhesive and adherends when the adherends are either
unidirectional, cross-ply or balanced laminates. However, in the case of balanced laminates the
axial stress in the angle plies may not be correctly predicted by the BONJO solution approach due
to the neglect of extension-shear coupling effects in the lamina constitutive law. Furthermore, the
closed-form analysis technique BONJO fails to capture the true geometry and material property
variations that give rise to high stress gradients in the vicinity of the joint corners. In the absence of
either a progressive damage analysis or a suitable failure criterion to predict the numerical value of
ultimate joint failure load, the impact of the accuracy of numerical values of stresses obtained from
these analyses could not be ascertained. The quantitative comparison of failure loads has always
been an important issue that needs to be addressed in fully justifying the need of 3-D analysis
versus a 1-D or a 2-D simplified stress analysis. However, the importance of having a full 3-D
analysis such as SAVE or ABAQUS that utilizes the least amount of analytical simplifications as
compared to any other analyses techniques cannot be undermined. A full 3-D analysis is necessary
if one has to gain a complete insight into the stress response of a complex structural configuration
such as an adhesively bonded joint.

The submodeling technique available in the commercial finite element package ABAQUS was
explored to study the stress field in the vicinity of free-edges and debond cracks in the bond
region. A general conclusion is that the explored submodeling technique showed significant
accuracy improvement of the stress computation near the ends of the overlap in composite-to-metal
and composite-to-composite bonded joints. The obtained results show that even at a small distance
from the line of singularity, the stresses computed with the global analysis and with the
submodeling technique are practically indistinguishable. The difference appears only in a small
vicinity of the line of singularity, where submodeling definitely improves the stress computation.
However, even by using more and more localized stress analyses, it seems impossible to
numerically satisfy all of the required stress boundary conditions at the end of the overlap. It can be
argued that the problem is of a purely academic interest, because exactly at the end of the overlap
the stresses are singular anyway, so mathematical failure criteria does not apply there and,
accordingly, failure initiation prediction is impossible. On the other hand, if applying averaging of
the computed stresses along some finite length zone near the end of the overlap, obtaining exact
stress values at the points close to the line of singularity may be unnecessary.

Finally, the bonded joint analyses codes BONJO series developed by the Lockheed Corporation
under a contract from WL/FIBE, Wright-Patterson Air Force Base, OH, were incorporated into a
PC based bonded design methodology. The bonded joint design tool is made more informative and
user-friendly through the use of Windows 95TM based Graphic User Interfaces (GUIs) fully
integrated with a material database and online help. This design tool would be useful for DoD,
aerospace and other industries such as automotive, sporting goods, etc.

6.2 RECOMMENDATIONS FOR FUTURE WORK

The work performed on this SBIR Phase II activity can be readily extended by the AdTech. It is

felt that the accomplishment of following works would enhance the composite bonded joint

technology immensely.

* Use of singular elements to model the regions of stress singularities either at the joint corners or
at the tip of the debond cracks;
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+ Incorporation of either a failure criterion based on the interaction of interlaminar normal and/or
transverse shear stress components or a fracture mechanics based progressive failure
methodology to get estimates of the failure initiation load and/or ultimate failure load in
composite bonded joints;

» Incorporation of a life prediction methodology under fatigue loading;

« Elaborate experimental study of bonded joint specimens to generate sufficient data to validate the
analytical models.
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Appendix-A

Consider a brick element composed of an orthotropic lamina oriented at an angle 001y

w.r.t to the x-axis. The angle By is also known as the ply orientation angle, and is

measured positive anti-clockwise w.r.t to the x-axis. Thus, the transformed stiffness

coefficients Oy of the {Q} matrix appearing in the material law of the brick element in

Egs. (5) and (6) (see Section 3.1) are given by

O = Cym* +2(Cpp + 2Cg6)m*n® + Copn®

Q12 =(Cpy+ Cpp =4 Cy)m*n” + Cpp(m* +n*)

Qi3 = Ciym* + Cyn?

Qi6 =[(Crym* — Copr® = (Cpp + 2Cg6)(m? ~ n?)mn
O =Cy* +2(Cpp +2Ce6)m*n? + Coymt®

Oy3 =Cian’ + Cyym®

Qo6 =[(C117* — Copm?® +(Ci +2Ce)(m? - n2)jmn
O3 =Cs3

O36 = (Ci3— G3)mn

Ony =Cygn? + Cs5n?

Ors =(Css — Cyq)mn

2 2
Oss = Cyqn” + Cssm
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Os6 = (C11 +Cxp = 2C1p)m?n? ++Cog(m* —n* )’

where

_ Ej1(1-vp303) = Epyy (V12 + V13033)

E33(v13+ V120
Gy = e _ E33(013 +915023)

D D > 13 D
Cor = Epy(1-113031) _ E33(vp3 +21V13) _ E33(1-v12091)
22 — D » W23 < D s V33 = D

Cys = Go3, Cs5=Gy3, CGe6 =Gy and D =1~ V15021 — V13031 — V32023 — 201202303 -

The coefficients Rj-, i=a,B and j=1,2..6 represent the contributions of hygrothermal
stresses into the material law of the brick element. These coefficients as appearing in Egs.
(5) and (7) are given as

R} = (Cyjiy + Crafy + Crzis)n® +(Crgiy + Cpaip + Cpsiz)

RS = (Cyyiy + Ciaiy + Cizis)n® + (Crgiy + ooy + Cpsiz)m?

R = Cyi; + Cozip +Csi3 (A-2)
R}=Ri=0

R =[(G —Cp2)i +(Ca —C)ip +(Gi3 = GaaYis}mn, i=au,B.

The Eq. (A-2) computes the thermal stress coefﬁcients R® for i=o., and the stress
coefficients due to moisture content R for i= B.In Egs. (A-1) and (A-2), m= CosOpy,

and n= Sz‘neply .

149




Appendix-B

In general the stiffness matrix me of the brick element, Eq. (22) (see Section 3.1), can be

written in the partitioned form as

[ oam am
Apm = Aﬁ% A)‘z,;)n A}% (B-1) -

AD g g

The symmetric sub-elements of the stiffness matrix appearing in Eq. (B-1) for a

rectangular brick element are given by

bhQ D5 BB ahQes P YNRLC  abQss0 DIk

A% = . : - + - 2_ 4 2h0, 00"
w _ 51060011 ah0c@ eSO abossi 0 ey
Anm = a * b h
+h(Q12+Q66)‘3[>§mg ‘ng‘b;wc
A2 = B(Qy3+ O55) BY" BT DY + (O3 + Oys) BT D ®-2)

bhQss@y P}'OY°  ahpn @I OYOL a0y @10 DY
4y, = - + - + - +2h0 D5 D5 D]

A28 = b(Qs6+ Qus)DY SO NOY + a0y + Q4 0705 DT

O e N ahQy, @} @3 " N abQs:0} @0}

nm a b h

+2h0,s0) 0o}
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where

1

1 1
ol = [ B @F EXE, O = [GHmGE mdn, @4 = [ HE QB Ot
0 0 : 0

1 1 u u 1
OF¥(E)0 p(ﬁ) oG (n)aG m) & (OHE(L) OH! )
’ ,(I) = dC
e
1 FU .
u F5(8) oF"
‘1’3§ = J F (&)—a—di J.F,';‘ (i)—é&)dé (B-3)
0
m b 9GEm . 9G%(m)
0 0
1 )2
u (C) (C)
¢3C=IH}‘<Q = IH“(C) ’C C
0
and
1
o = JF”(&)F“(&)d& o= I GE(MGE (), B = [ BLQHAOL
0
o 1aFV(g) IFE (&) a 19GM) BG”(n) . ‘aHk(c) aH“(c)
=[S = ==
0 0 0
wE FAE) F
¢3§=IE”(§)-—§—d§ IF;‘(&)—g@d& | B-4)
0

on | G*m 1 3G (M
D3 k =JG;(H)—§T—¢H =J.Gg(ﬂ)f§n—dﬂ
0 0
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oy ()

1
wv o
@ = | Hy =gt - IH“«;) Hi ©)
0

acc

Other forms of integrals such as <I> = <I>1n, CI)‘I’C, etc., appearing in Egs. (B-2) are
obtained by simply replacing superscript ‘»” by ‘v’ in the expressions for the integrals
(leg, @m, <1>sz, etc., given by the Egs. (B-3). Similarly, the integrals such as (Dlwé,
(I>im , CDIWC, etc., appearing in Egs. (B-2) are obtained by replacing superscript ‘u’ by ‘w’
in the expressions for the integrals @ é, o, <I>uC c., given by Egs. (B-3).
Furthermore, the integrals such as @?wg , q)'fwn , CI)gwC , etc., appearing in Egs. (B-2) are
obtained by replacing superscript ‘u’ by ‘w’ in the expressions for the integrals d)zfvg,
(o2 hel <I>3 oG , etc., given by Egs. (B-4). Similarly, the integrals such as <I>1 e @an

@;wé , €tc., appearing in Eqs. (B-2) are obtained by replacing superscripts ‘u’ by ‘v’ and
v’ by ‘w’ in the expressions for the integrals <I>’fv§, CDllml, @?C, etc., givenby Egs. (B-

4).

It is common to use the same polynomial approximations for all the three displacement
components. This results in reduced computational efforts and book-keeping. For this
special case the actual and virtual displacement fields for the rectangular brick element are

written as
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J K
>, 2UnF ©G;MH Q)

j=1j=1k=l

-

M~

&
i

- - B-5

87 & {(80,F, (8)G, (W H, (O} ®-)
where, U, = {U,y Vs Wy} and 80U, = {8U,,,8V,,,8W,,} .

Thus, the integrals given by Eqs. (B-4) assume the same form as those givenby Egs. (B-

3). The symmetric sub-elements of the stiffness matrix :4__,1,,,, Eq. (B-2), get simplified,

and are now given by

bh0 501D ahQss®F0IOL  abOssorale;
a b h

uu _
Anm -

+ 2106 D3O

o _ D051t ahgy@felot  aboys@ie]@;

o = A2l 22 nOn + 0%}
413 =013+ 055) 930705 + D3 + 1) 01033 (B-6)
o th66c1;§<I>}1q>§ . athzq;)%@’z‘@% . abQ44<If<I>?<I>g 210, 5015
A% =b(Os6-+ Q15)D50]05 +a(0ns + )01 I0T
o bhgssclfﬁ‘@lg . ah@ﬂ;?@?cb% . abQ33<1;%<1>}1<1>§ 2100500

Further, the superscripts used in the functions FY (&), etc., in the integrals given by Egs. -

(B-3) are no more required. Thus, the integrals of Egs. (B-3) can now be written in

simplified form as
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1 1 1
®; = [ F; ©)F,®)d, o] = [G,mG,mdn, & = | H,(OH,§)E
0 0 0

{OF, (£)0 p(ﬁ) £0G;(m) 3G, (n) (OH, ) 9H, (©)
(I) =J(; a (_1. s q)2 "J(; ac ac dc
1 1
F,(E) oF;
= |F <§>————-av;§é J Fy(®) —M@ (B-7)
) .

- G,m | 3G, (M)
; =ij(n>—an—dn IGq< g,
0

1 1
o5 = [ H; () —=d "C(Qc I H, () —2—=d ’C@c
0
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Appendix-C

The symmetric sub-elements of the stiffness matrix appearing in Eq. (B-1) for a

cylindrical brick element are given by

hOQ, B0 L ahQ66c1>{‘§cp§’“c1> ug N 20055 PPN DL
a Q) h

uu _
Anm -

2h916¢3€¢3 (I)lc

o hO0 @S DI ORE  any @ RE O aeg, 0t 0l eg"
Ay = e + P + P
+h(0pp + Q66)<1>13”§‘D§m¢1 —a@0,5P; éq’um@gvg
uw uw§, - uwm) . uw( uw€ - wwn - uw(
A =O(Qi3+ 0s55)D3 "@p @7 " +a(PQ36 + Uis)P; @303
+ hOQLB O MPIME 1 a0y (DI P DI

(€

v ORI  ah0y, L0 000401 e er
Aom = a ¥ (] + h
+ahOO D OO —2000,,0,° 0]}

+2h00L YD

A7 = 0036+ Qs5)05 0D 1 a(0ys + 04) O 07 0T
+ah(Ony — 04 YOS NOIYE 1 hO(Or6 — Ous) DS DT O]

ww_heQSSq);g o "oy" ahQu @ 002 a00;,0! 0! 0y e
Aom = a * ) * h
+ 270, DL BINDT + 20000 50! DY + a0, YD DL"

where

1
Ol = [ HEQHH QR+
0
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a5
(R+ 1Y)

o = I HEQHAQ)

o B aHk SRS,

1
O = [ HYQHH QR + hE)dg C2)
) .

ot = } H OHH Q)
5 (R+h)

t; J‘aHk(C) oH (L) dg
o (R+h0)

JC); (e ‘ 1@
o = [ H Q2R mod = | B QT A R+ O
0 0

The common integrals appearing in Egs. (B-2) and (C-1) are given by Egs. (B-3) and (B-
4), and are not repeated again. As explained earlier, the other forms of integrals appearing

in Egs. (C-1) are obtained by simply replacing superscript ‘¥’ by ‘v’ and ‘%’ by ‘w’ in the

expressions for the integrals CIJIg, o]", @] e (lewg . <I>'3‘w ¢ , etc given by the Egs. (C-2).
For the case of same polynomial approximations employed for all the three displacement -

components, the symmetric sub-elements of the stiffness matrix Zm , Eq. (C-1), for the

cylindrical brick element are given in simplified form as
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Nps Epl
e 100 1<1;§<1>1 %, P00 ohos a®Q55‘II>j‘1’P¢% e 2h0 BhoTt
w 10005010 , 00 olat 400, 0°0N0s £t
- TS o2 RRTIZ6 01y + 0ge) D500
- 00,507 soTps
450 = ©(0r3 + 055 D079 + (036 + Qus) D7 0705 + 1001, B3O} 3
+ ah Q@505
w_ OhQs D3] 0 athzq’lé‘Dz‘Dg a00,, ;0] 08 € Mrl
nm a @ + h 2hQ26(D3q)3 (I)l
+ ah©Q,,®°ONDS — 2000, 0105
A7 =O(Os6 + 04) D3 OTDF +a(Os + Qaa) BT DT @5 + a(Qs2 — 0aa)OTT DS
+HO(Qs6 — Os5)P30] O
yl Nt n
Agnw_hersq;z‘D o +ahQ44dg<I>2(D5 +a@Q33‘1;11¢1‘1’6 2hQ45<I>§<I>131d>%
+23005; B DNDS + ahO0y, BT VD3 ‘
where
1
5 = [ Hy(Q H, QR+ hO)dG
0
¢ a5
®3 =£ 5O O m s c4

(R +hC)dG

JBHk(C) oH, (Q/
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1 . 1
oH, oH
% = | H,© To2r+ ot = [ 1. T2 E m s hy
0 0

]S

The common integrals appearing in Eq. (B-6) and (C-3) are given by Eqgs. (B-7) and hence,

are not repeated here.
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Appendix-D

The stiffness matrix Zm for the solid wedge element is derived only for the special case

of same polynomial functions being used to approximate all the three displacement
components. For the solid wedge element oriented in x-y plane the actual and virtual
displacement field for the can be written as

1 J K _
= gijz—lkz—lUmEj EH(©)

8 € (80, Fpg € H, (©) ®-1)

Various quantities appearing in Eq. (D-1) have been defined elsewhere in this work. The
symmetric sub-elements of the stiffness matrix anm as described in Eq. (B-1) for a wedge

element oriented in x-y plane are given by

NenS n gl
- D0 lfg @ ah96621>§ o abgssf? 9%, 210,250t
bhO OB ah0 DS ab0, BB
4P = Q16a§ §+a Q26b§ P, Q45h§ g+h(Q12+Q66)q)§n(D%
A2 = b(Q13 + 0s5) DT'D5 +a( Oz + Oss) BT 03 ®-2)

£ 2h 005D

v bhOsFDY  ah0n @50} ab0u @705
A = , + 5 + h

AT = b(Os6+ Oas) DD +a(Qrs + 0as) D305
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A =

b

thssq’gn‘I’? N ahQ44cI>§"d>1§ N abQ33‘I’§n¢’%
a

The integrals (I)i-;,i =12,3 are givenby Egs. (B-7). The remaining integrals are given by

the following expressions:

q,&n
0

o ﬁi OF (.1 9F,y (1)
oo M on

1[1-¢ 1t —
=J .[ E; (€, Fpy (&, ﬂ)dn}d& q, J‘[J‘ (€.m) 9Fp, (€, 1)
0

.

1[1-§
o'=[| [ & N LI
0L O aé |
1f1= 3F,, Em) |
o3 = | Mj@,m%mdn &=l |
0L O

_ﬁ& OF; (E,1) 3F g (51
7 o

.

d§=i |

dr‘:|d§ >

a5, (D-3)

o 9% a

'+ 2oR &)
— 35— Foa Gn

0

1838 &.m)
—L= " F () |dE
0] 0 an

=]l | =55

0

Tf 3Fy (&,1) IF g (&) dn} o

Similarly, the symmetric sub-elements of the stiffness matrix for a wedge element oriented

in y-z plane are given by

uu __
Anm -

bhQy@50T°  ahQss®i @l

+ 250, D30T

a b

uv

abQss507°
* 7

bhQ5R]°  ahOx®re]"  abQus@ref"

nm a b

= (1 + 06 )05 0]
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A% = 5013+ Os5)DION° +a(Os6+ O4s)DTDE” (D-4)

050 ang0folt aputol

nm — a b h +2hQ26(I)§(I)2§

AT8 = b(Q36+ Q15)D5OR +a( Oy + 0ua)OTOE

ww _ bhQss®3 D] N ahQy @7 @3 . ab Q3,07 @Y

nm a b h + 2hQ45q)§ (I)Il c

The integrals <I>,§,i= 1,2,3 appearing in Eqs. (D-4) are given by Egs. (B-7), and the
remaining integrals are obtained by replacing & by mand n by { in Egs. (D-3).
Proceeding on the similar lines, the symmetric sub-elements of the stiffness matrix for a

wedge element oriented in x-z plane (see Fig. 3) are given by

o B0 lcfé%l’ . ahQ662P§§¢121 . astsi’gc‘Dp 210,050

o thmf%%P . athZb%%‘z‘ . ab%f%‘dﬂ HO + 0855

A5 =b(Qi3 + Os5) BF0] +a(Os6 + Qus)®50] @-5)
w bhgasfS%? X ahgzz;bﬁ%é‘ . abQMf%’;@I‘ 210500

AT = B0z + O45) BFo® ] + (O3 + O4g) DL DY

W _ bhQss®5°®]! N ahQs P7°0Y N ab03;053°0]!

nm a b 2 + 2}1‘Q45q)§€(1)1:’;l

The integrals d>?,i =123 appearing in Egs. (D-5) are given by Egs. (B-7), and the

remaining integrals are obtained by simply replacing and 1} by { in Eqgs. (D-3).
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